废混凝土细骨料与高炉矿渣粉制高强砂浆的力学性能

A. H. Nahhab
{"title":"废混凝土细骨料与高炉矿渣粉制高强砂浆的力学性能","authors":"A. H. Nahhab","doi":"10.29196/jub.v26i2.591","DOIUrl":null,"url":null,"abstract":"The mechanical properties of high strength mortars produced with fine waste concrete aggregate (FWCA) and GGBFS were investigated. The natural sand was replaced by FWCA with different levels, namely 0, 25, 50, 75, and 100%. The ordinary Portland cement (OPC) was substituted by GGBFS with 0, 30, and 60% by weight. To satisfy the requirements of high strength, all the mortar mixes were made with a 0.25 w/b ratio. The hardened mortars were tested for compressive strength, splitting tension, and fracture parameters at different ages. The experimental findings showed that the mixtures with FWCA showed lower strength, fracture energy and toughness compared to the corresponding reference mixes at a given age and GGBFS content. The 30% replacement of OPC by GGBFS improved the strengths of all mixes at 28 and 90 days. Moreover, the use of 30% GGBFS counterbalanced the strength decrement due to the use of the FWCA such that the mixtures with FWCA and GGBFS showed strengths comparable to or even exceeded the strengths of the mixtures made with natural sand only.","PeriodicalId":17505,"journal":{"name":"Journal of University of Babylon","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2018-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Mechanical Properties of High Strength Mortars Made withFine Waste Concrete Aggregates and Ground Granulated Blast Furnace Slag\",\"authors\":\"A. H. Nahhab\",\"doi\":\"10.29196/jub.v26i2.591\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The mechanical properties of high strength mortars produced with fine waste concrete aggregate (FWCA) and GGBFS were investigated. The natural sand was replaced by FWCA with different levels, namely 0, 25, 50, 75, and 100%. The ordinary Portland cement (OPC) was substituted by GGBFS with 0, 30, and 60% by weight. To satisfy the requirements of high strength, all the mortar mixes were made with a 0.25 w/b ratio. The hardened mortars were tested for compressive strength, splitting tension, and fracture parameters at different ages. The experimental findings showed that the mixtures with FWCA showed lower strength, fracture energy and toughness compared to the corresponding reference mixes at a given age and GGBFS content. The 30% replacement of OPC by GGBFS improved the strengths of all mixes at 28 and 90 days. Moreover, the use of 30% GGBFS counterbalanced the strength decrement due to the use of the FWCA such that the mixtures with FWCA and GGBFS showed strengths comparable to or even exceeded the strengths of the mixtures made with natural sand only.\",\"PeriodicalId\":17505,\"journal\":{\"name\":\"Journal of University of Babylon\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-01-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of University of Babylon\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.29196/jub.v26i2.591\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of University of Babylon","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.29196/jub.v26i2.591","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Mechanical Properties of High Strength Mortars Made withFine Waste Concrete Aggregates and Ground Granulated Blast Furnace Slag
The mechanical properties of high strength mortars produced with fine waste concrete aggregate (FWCA) and GGBFS were investigated. The natural sand was replaced by FWCA with different levels, namely 0, 25, 50, 75, and 100%. The ordinary Portland cement (OPC) was substituted by GGBFS with 0, 30, and 60% by weight. To satisfy the requirements of high strength, all the mortar mixes were made with a 0.25 w/b ratio. The hardened mortars were tested for compressive strength, splitting tension, and fracture parameters at different ages. The experimental findings showed that the mixtures with FWCA showed lower strength, fracture energy and toughness compared to the corresponding reference mixes at a given age and GGBFS content. The 30% replacement of OPC by GGBFS improved the strengths of all mixes at 28 and 90 days. Moreover, the use of 30% GGBFS counterbalanced the strength decrement due to the use of the FWCA such that the mixtures with FWCA and GGBFS showed strengths comparable to or even exceeded the strengths of the mixtures made with natural sand only.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The Blue Molybdenum Reaction for the Determination of Phosphate in Natural Water and Detergent Samples Polymeric Chitosan/Poly (Vinyl Alcohol) Hybrid Doped with Zinc Oxide Nanoparticles Synthesized and Characterized Using the Electrospun Method The Effects of Head Pose and Face Roundness on Age Progression in Children Faces Design of Fullerene20-thieno[2,3-c]pyrrole-4,6(5H)-dione-fullerene20 for Opto-nonlinear applications: Quantum Mechanical Study Study the Optical Properties of Polyvinyl Alcohol Thick Film Irradiated with Violet Laser
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1