H. Kokkinen, A. Piemontese, Arto Reis-Kivinen, Lukasz Kulacz, Nathan Borios, Carla Amatetti
{"title":"地面和卫星网络频谱共享的概念验证","authors":"H. Kokkinen, A. Piemontese, Arto Reis-Kivinen, Lukasz Kulacz, Nathan Borios, Carla Amatetti","doi":"10.1109/EuCNC/6GSummit58263.2023.10188333","DOIUrl":null,"url":null,"abstract":"Satellite communication systems are fundamental components to deploy the future smart and sustainable networks and to achieve the ambitious goal of bringing wireless connectivity anywhere, anytime, at any device. In this new role, one of the main challenges that satellite communication component has to face is the maximization of the spectrum usage. 3GPP communication technologies are extended from Terrestrial Networks (TNs) to Non-Terrestrial Networks (NTNs), but so far the standardisation efforts have been focused on systems where TNs and NTNs operate in their dedicated frequency bands. In this paper, a dynamic spectrum sharing model between NTN elements, in a Non Geostationary orbit, and TN is proposed. A Proof of Concept (PoC) is developed, in order to carry out the interference protection computation. We show that the developed spectrum sharing model can enable spectrum sharing between NTN and TN when their coverage areas do not have to overlap, that the sharing arrangement increases significantly the service coverage in the frequency band and slightly improves the spectrum utilization efficiency. It is also shown that the spectrum management system is able to manage the interference level and to keep the interference-to-noise ratio at the TN user equipment below the specified limit. In fact, the aggregate interference caused by the sharing arrangement does not decrease the capacity of the TN downlink.","PeriodicalId":65870,"journal":{"name":"公共管理高层论坛","volume":"72 1","pages":"276-281"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Proof of Concept for Spectrum Sharing between Terrestrial and Satellite Networks\",\"authors\":\"H. Kokkinen, A. Piemontese, Arto Reis-Kivinen, Lukasz Kulacz, Nathan Borios, Carla Amatetti\",\"doi\":\"10.1109/EuCNC/6GSummit58263.2023.10188333\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Satellite communication systems are fundamental components to deploy the future smart and sustainable networks and to achieve the ambitious goal of bringing wireless connectivity anywhere, anytime, at any device. In this new role, one of the main challenges that satellite communication component has to face is the maximization of the spectrum usage. 3GPP communication technologies are extended from Terrestrial Networks (TNs) to Non-Terrestrial Networks (NTNs), but so far the standardisation efforts have been focused on systems where TNs and NTNs operate in their dedicated frequency bands. In this paper, a dynamic spectrum sharing model between NTN elements, in a Non Geostationary orbit, and TN is proposed. A Proof of Concept (PoC) is developed, in order to carry out the interference protection computation. We show that the developed spectrum sharing model can enable spectrum sharing between NTN and TN when their coverage areas do not have to overlap, that the sharing arrangement increases significantly the service coverage in the frequency band and slightly improves the spectrum utilization efficiency. It is also shown that the spectrum management system is able to manage the interference level and to keep the interference-to-noise ratio at the TN user equipment below the specified limit. In fact, the aggregate interference caused by the sharing arrangement does not decrease the capacity of the TN downlink.\",\"PeriodicalId\":65870,\"journal\":{\"name\":\"公共管理高层论坛\",\"volume\":\"72 1\",\"pages\":\"276-281\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"公共管理高层论坛\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://doi.org/10.1109/EuCNC/6GSummit58263.2023.10188333\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"公共管理高层论坛","FirstCategoryId":"96","ListUrlMain":"https://doi.org/10.1109/EuCNC/6GSummit58263.2023.10188333","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Proof of Concept for Spectrum Sharing between Terrestrial and Satellite Networks
Satellite communication systems are fundamental components to deploy the future smart and sustainable networks and to achieve the ambitious goal of bringing wireless connectivity anywhere, anytime, at any device. In this new role, one of the main challenges that satellite communication component has to face is the maximization of the spectrum usage. 3GPP communication technologies are extended from Terrestrial Networks (TNs) to Non-Terrestrial Networks (NTNs), but so far the standardisation efforts have been focused on systems where TNs and NTNs operate in their dedicated frequency bands. In this paper, a dynamic spectrum sharing model between NTN elements, in a Non Geostationary orbit, and TN is proposed. A Proof of Concept (PoC) is developed, in order to carry out the interference protection computation. We show that the developed spectrum sharing model can enable spectrum sharing between NTN and TN when their coverage areas do not have to overlap, that the sharing arrangement increases significantly the service coverage in the frequency band and slightly improves the spectrum utilization efficiency. It is also shown that the spectrum management system is able to manage the interference level and to keep the interference-to-noise ratio at the TN user equipment below the specified limit. In fact, the aggregate interference caused by the sharing arrangement does not decrease the capacity of the TN downlink.