V. T. Srikar, A. Swan, M. Unlu, B. Goldberg, S. Spearing
{"title":"微加工硅片弯曲应力的微拉曼测量","authors":"V. T. Srikar, A. Swan, M. Unlu, B. Goldberg, S. Spearing","doi":"10.1109/JMEMS.2003.820280","DOIUrl":null,"url":null,"abstract":"Micron-scale characterization of mechanical stresses is essential for the successful design and operation of many micromachined devices. Here we report the use of Raman spectroscopy to measure the bending stresses in deep reactive-ion etched silicon flexures with a stress resolution of /spl sim/10 MPa and spatial resolution of /spl sim/1 /spl mu/m. The accuracy of the technique, as assessed by comparison to analytical and finite-element models of the deformation, is conservatively estimated to be 25 MPa. Implications for the use of this technique in microsystems design are discussed.","PeriodicalId":13438,"journal":{"name":"IEEE\\/ASME Journal of Microelectromechanical Systems","volume":"15 1","pages":"779-787"},"PeriodicalIF":0.0000,"publicationDate":"2003-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"138","resultStr":"{\"title\":\"Micro-Raman measurement of bending stresses in micromachined silicon flexures\",\"authors\":\"V. T. Srikar, A. Swan, M. Unlu, B. Goldberg, S. Spearing\",\"doi\":\"10.1109/JMEMS.2003.820280\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Micron-scale characterization of mechanical stresses is essential for the successful design and operation of many micromachined devices. Here we report the use of Raman spectroscopy to measure the bending stresses in deep reactive-ion etched silicon flexures with a stress resolution of /spl sim/10 MPa and spatial resolution of /spl sim/1 /spl mu/m. The accuracy of the technique, as assessed by comparison to analytical and finite-element models of the deformation, is conservatively estimated to be 25 MPa. Implications for the use of this technique in microsystems design are discussed.\",\"PeriodicalId\":13438,\"journal\":{\"name\":\"IEEE\\\\/ASME Journal of Microelectromechanical Systems\",\"volume\":\"15 1\",\"pages\":\"779-787\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"138\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE\\\\/ASME Journal of Microelectromechanical Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/JMEMS.2003.820280\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE\\/ASME Journal of Microelectromechanical Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/JMEMS.2003.820280","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Micro-Raman measurement of bending stresses in micromachined silicon flexures
Micron-scale characterization of mechanical stresses is essential for the successful design and operation of many micromachined devices. Here we report the use of Raman spectroscopy to measure the bending stresses in deep reactive-ion etched silicon flexures with a stress resolution of /spl sim/10 MPa and spatial resolution of /spl sim/1 /spl mu/m. The accuracy of the technique, as assessed by comparison to analytical and finite-element models of the deformation, is conservatively estimated to be 25 MPa. Implications for the use of this technique in microsystems design are discussed.