Hou Yibo, Huo Yiping, Jiang Xueying, Zhouyi Chen, Guo Yiyuan, Ni Qiqiang, Heng Qian, Hao Xiangxiang
{"title":"基于新月交叉纳米结构的多次Fano共振和高FOM共振的产生","authors":"Hou Yibo, Huo Yiping, Jiang Xueying, Zhouyi Chen, Guo Yiyuan, Ni Qiqiang, Heng Qian, Hao Xiangxiang","doi":"10.12086/OEE.2020.200010","DOIUrl":null,"url":null,"abstract":"Metal surface plasmon has many novel optical properties and important applications, and it is also a research hotspot. In this paper, a crescent cross (CC) nanostructure composed of a crescent and a cross is studied by the finite element method. New plasmon magnetic mode and multiple Fano resonance can be induced by breaking structure symmetry through changing structure parameters. Meanwhile, by changing the angle between the two rods symmetrically, the figure of merit (FOM) can reach 61. Our structure has important applications in the fields of multi-wavelength sensor, ultra-sensitive biosensor, surface enhanced spectroscopy, and slow light transmission.","PeriodicalId":39552,"journal":{"name":"光电工程","volume":"100 1","pages":"200010"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Generation of multiple Fano resonance and high FOM resonance based on the crescent cross nanostructure\",\"authors\":\"Hou Yibo, Huo Yiping, Jiang Xueying, Zhouyi Chen, Guo Yiyuan, Ni Qiqiang, Heng Qian, Hao Xiangxiang\",\"doi\":\"10.12086/OEE.2020.200010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Metal surface plasmon has many novel optical properties and important applications, and it is also a research hotspot. In this paper, a crescent cross (CC) nanostructure composed of a crescent and a cross is studied by the finite element method. New plasmon magnetic mode and multiple Fano resonance can be induced by breaking structure symmetry through changing structure parameters. Meanwhile, by changing the angle between the two rods symmetrically, the figure of merit (FOM) can reach 61. Our structure has important applications in the fields of multi-wavelength sensor, ultra-sensitive biosensor, surface enhanced spectroscopy, and slow light transmission.\",\"PeriodicalId\":39552,\"journal\":{\"name\":\"光电工程\",\"volume\":\"100 1\",\"pages\":\"200010\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"光电工程\",\"FirstCategoryId\":\"1087\",\"ListUrlMain\":\"https://doi.org/10.12086/OEE.2020.200010\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"光电工程","FirstCategoryId":"1087","ListUrlMain":"https://doi.org/10.12086/OEE.2020.200010","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
Generation of multiple Fano resonance and high FOM resonance based on the crescent cross nanostructure
Metal surface plasmon has many novel optical properties and important applications, and it is also a research hotspot. In this paper, a crescent cross (CC) nanostructure composed of a crescent and a cross is studied by the finite element method. New plasmon magnetic mode and multiple Fano resonance can be induced by breaking structure symmetry through changing structure parameters. Meanwhile, by changing the angle between the two rods symmetrically, the figure of merit (FOM) can reach 61. Our structure has important applications in the fields of multi-wavelength sensor, ultra-sensitive biosensor, surface enhanced spectroscopy, and slow light transmission.
光电工程Engineering-Electrical and Electronic Engineering
CiteScore
2.00
自引率
0.00%
发文量
6622
期刊介绍:
Founded in 1974, Opto-Electronic Engineering is an academic journal under the supervision of the Chinese Academy of Sciences and co-sponsored by the Institute of Optoelectronic Technology of the Chinese Academy of Sciences (IOTC) and the Optical Society of China (OSC). It is a core journal in Chinese and a core journal in Chinese science and technology, and it is included in domestic and international databases, such as Scopus, CA, CSCD, CNKI, and Wanfang.
Opto-Electronic Engineering is a peer-reviewed journal with subject areas including not only the basic disciplines of optics and electricity, but also engineering research and engineering applications. Optoelectronic Engineering mainly publishes scientific research progress, original results and reviews in the field of optoelectronics, and publishes related topics for hot issues and frontier subjects.
The main directions of the journal include:
- Optical design and optical engineering
- Photovoltaic technology and applications
- Lasers, optical fibres and communications
- Optical materials and photonic devices
- Optical Signal Processing