一种新颖的、低延迟的多Group-By查询优化算法

Duy-Hung Phan, P. Michiardi
{"title":"一种新颖的、低延迟的多Group-By查询优化算法","authors":"Duy-Hung Phan, P. Michiardi","doi":"10.1109/ICDE.2016.7498249","DOIUrl":null,"url":null,"abstract":"Data summarization is essential for users to interact with data. Current state of the art algorithms to optimize its most general form, the multiple Group By queries, have limitations in scalability. In this paper, we propose a novel algorithm, Top-Down Splitting, that scales to hundreds or even thousands of attributes and queries, and that quickly and efficiently produces optimized query execution plans. We analyze the complexity of our algorithm, and evaluate, empirically, its scalability and effectiveness through an experimental campaign. Results show that our algorithm is remarkably faster than alternatives in prior works, while generally producing better solutions. Ultimately, our algorithm reduces up to 34% the query execution time, when compared to un-optimized plans.","PeriodicalId":6883,"journal":{"name":"2016 IEEE 32nd International Conference on Data Engineering (ICDE)","volume":"25 1","pages":"301-312"},"PeriodicalIF":0.0000,"publicationDate":"2016-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"A novel, low-latency algorithm for multiple Group-By query optimization\",\"authors\":\"Duy-Hung Phan, P. Michiardi\",\"doi\":\"10.1109/ICDE.2016.7498249\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Data summarization is essential for users to interact with data. Current state of the art algorithms to optimize its most general form, the multiple Group By queries, have limitations in scalability. In this paper, we propose a novel algorithm, Top-Down Splitting, that scales to hundreds or even thousands of attributes and queries, and that quickly and efficiently produces optimized query execution plans. We analyze the complexity of our algorithm, and evaluate, empirically, its scalability and effectiveness through an experimental campaign. Results show that our algorithm is remarkably faster than alternatives in prior works, while generally producing better solutions. Ultimately, our algorithm reduces up to 34% the query execution time, when compared to un-optimized plans.\",\"PeriodicalId\":6883,\"journal\":{\"name\":\"2016 IEEE 32nd International Conference on Data Engineering (ICDE)\",\"volume\":\"25 1\",\"pages\":\"301-312\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-05-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE 32nd International Conference on Data Engineering (ICDE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDE.2016.7498249\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE 32nd International Conference on Data Engineering (ICDE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDE.2016.7498249","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

数据汇总是用户与数据交互的必要条件。当前的最先进的算法,以优化其最一般的形式,多个Group By查询,在可扩展性方面有限制。在本文中,我们提出了一种新的算法,自顶向下分割,它可以扩展到数百甚至数千个属性和查询,并且可以快速有效地生成优化的查询执行计划。我们分析了我们的算法的复杂性,并通过实验活动经验地评估了它的可扩展性和有效性。结果表明,我们的算法明显快于以前的替代方案,同时通常产生更好的解决方案。最终,与未优化的计划相比,我们的算法最多减少了34%的查询执行时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A novel, low-latency algorithm for multiple Group-By query optimization
Data summarization is essential for users to interact with data. Current state of the art algorithms to optimize its most general form, the multiple Group By queries, have limitations in scalability. In this paper, we propose a novel algorithm, Top-Down Splitting, that scales to hundreds or even thousands of attributes and queries, and that quickly and efficiently produces optimized query execution plans. We analyze the complexity of our algorithm, and evaluate, empirically, its scalability and effectiveness through an experimental campaign. Results show that our algorithm is remarkably faster than alternatives in prior works, while generally producing better solutions. Ultimately, our algorithm reduces up to 34% the query execution time, when compared to un-optimized plans.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Data profiling SEED: A system for entity exploration and debugging in large-scale knowledge graphs TemProRA: Top-k temporal-probabilistic results analysis Durable graph pattern queries on historical graphs SCouT: Scalable coupled matrix-tensor factorization - algorithm and discoveries
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1