基于自适应梯度倒易滤波的红外弱小目标场景背景抑制

Q3 Engineering 光电工程 Pub Date : 2021-01-01 DOI:10.12086/OEE.2021.210122
Biao Li, Zhiyong Xu, Chen Wang, Jianlin Zhang, Xiangru Wang, Xiangsuo Fan
{"title":"基于自适应梯度倒易滤波的红外弱小目标场景背景抑制","authors":"Biao Li, Zhiyong Xu, Chen Wang, Jianlin Zhang, Xiangru Wang, Xiangsuo Fan","doi":"10.12086/OEE.2021.210122","DOIUrl":null,"url":null,"abstract":": Due to the small scale and weak energy of the infrared dim small target, the background must be suppressed to enhance the target in order to ensure the performance of detection and tracking of the target in the later stage. In order to improve the ability of gradient reciprocal filter to suppress the clutter texture and reduce the interference of the residual texture to the target in the difference image, an adaptive gradient reciprocal filtering algorithm (AGRF) is proposed in this paper. In the AGRF, the adaptive judgment threshold and the adaptive relevancy coefficient function of inter-pixel correlation in the local region are determined by analyzing the distribution characteristics and statistical numeral characteristic of the background region, clutter texture, and target. Then the element value of the adaptive gradient reciprocal filter is determined by combining the relevancy coefficient function and the gradient reciprocal function. Experimental results indicate that the sensitivity of the AGRF algorithm to the clutter texture is significantly lower than that of the traditional gradient reciprocal filtering algorithm under the premise of the same target enhancement performance. Compared with the other nine algorithms, the AGRF algorithm has better signal-to-noise ratio gain (SNRG) and background suppress factor (BSF).","PeriodicalId":39552,"journal":{"name":"光电工程","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Background suppression for infrared dim small target scene based on adaptive gradient reciprocal filtering\",\"authors\":\"Biao Li, Zhiyong Xu, Chen Wang, Jianlin Zhang, Xiangru Wang, Xiangsuo Fan\",\"doi\":\"10.12086/OEE.2021.210122\",\"DOIUrl\":null,\"url\":null,\"abstract\":\": Due to the small scale and weak energy of the infrared dim small target, the background must be suppressed to enhance the target in order to ensure the performance of detection and tracking of the target in the later stage. In order to improve the ability of gradient reciprocal filter to suppress the clutter texture and reduce the interference of the residual texture to the target in the difference image, an adaptive gradient reciprocal filtering algorithm (AGRF) is proposed in this paper. In the AGRF, the adaptive judgment threshold and the adaptive relevancy coefficient function of inter-pixel correlation in the local region are determined by analyzing the distribution characteristics and statistical numeral characteristic of the background region, clutter texture, and target. Then the element value of the adaptive gradient reciprocal filter is determined by combining the relevancy coefficient function and the gradient reciprocal function. Experimental results indicate that the sensitivity of the AGRF algorithm to the clutter texture is significantly lower than that of the traditional gradient reciprocal filtering algorithm under the premise of the same target enhancement performance. Compared with the other nine algorithms, the AGRF algorithm has better signal-to-noise ratio gain (SNRG) and background suppress factor (BSF).\",\"PeriodicalId\":39552,\"journal\":{\"name\":\"光电工程\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"光电工程\",\"FirstCategoryId\":\"1087\",\"ListUrlMain\":\"https://doi.org/10.12086/OEE.2021.210122\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"光电工程","FirstCategoryId":"1087","ListUrlMain":"https://doi.org/10.12086/OEE.2021.210122","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 3

摘要

:由于红外弱小目标的规模小、能量弱,为了保证后期对目标的检测和跟踪性能,必须对背景进行抑制,对目标进行增强。为了提高梯度倒易滤波对杂波纹理的抑制能力,降低差分图像中残留纹理对目标的干扰,本文提出了一种自适应梯度倒易滤波算法。在AGRF中,通过分析背景区域、杂波纹理和目标的分布特征和统计数值特征,确定局部区域像素间相关的自适应判断阈值和自适应关联系数函数。然后结合相关系数函数和梯度倒数函数确定自适应梯度倒数滤波器的元值。实验结果表明,在目标增强性能相同的前提下,AGRF算法对杂波纹理的灵敏度明显低于传统梯度倒易滤波算法。与其他9种算法相比,AGRF算法具有更好的信噪比增益(SNRG)和背景抑制因子(BSF)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Background suppression for infrared dim small target scene based on adaptive gradient reciprocal filtering
: Due to the small scale and weak energy of the infrared dim small target, the background must be suppressed to enhance the target in order to ensure the performance of detection and tracking of the target in the later stage. In order to improve the ability of gradient reciprocal filter to suppress the clutter texture and reduce the interference of the residual texture to the target in the difference image, an adaptive gradient reciprocal filtering algorithm (AGRF) is proposed in this paper. In the AGRF, the adaptive judgment threshold and the adaptive relevancy coefficient function of inter-pixel correlation in the local region are determined by analyzing the distribution characteristics and statistical numeral characteristic of the background region, clutter texture, and target. Then the element value of the adaptive gradient reciprocal filter is determined by combining the relevancy coefficient function and the gradient reciprocal function. Experimental results indicate that the sensitivity of the AGRF algorithm to the clutter texture is significantly lower than that of the traditional gradient reciprocal filtering algorithm under the premise of the same target enhancement performance. Compared with the other nine algorithms, the AGRF algorithm has better signal-to-noise ratio gain (SNRG) and background suppress factor (BSF).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
光电工程
光电工程 Engineering-Electrical and Electronic Engineering
CiteScore
2.00
自引率
0.00%
发文量
6622
期刊介绍:
期刊最新文献
The joint discriminative and generative learning for person re-identification of deep dual attention Fiber coupling technology of high brightness blue laser diode A few-shot learning based generative method for atmospheric polarization modelling Characteristics of wavefront correction using stacked liquid lens based on electrowetting-on-dielectric Research on joint coding for underwater single-photon video communication
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1