基于任务嵌入的深度生成模型的多重处理效果估计

S. Saini, Sunny Dhamnani, Aakash Srinivasan, A. A. Ibrahim, Prithviraj Chavan
{"title":"基于任务嵌入的深度生成模型的多重处理效果估计","authors":"S. Saini, Sunny Dhamnani, Aakash Srinivasan, A. A. Ibrahim, Prithviraj Chavan","doi":"10.1145/3308558.3313744","DOIUrl":null,"url":null,"abstract":"Causal inference using observational data on multiple treatments is an important problem in a wide variety of fields. However, the existing literature tends to focus only on causal inference in case of binary or multinoulli treatments. These models are either incompatible with multiple treatments, or extending them to multiple treatments is computationally expensive. We use a previous formulation of causal inference using variational autoencoder (VAE) and propose a novel architecture to estimate the causal effect of any subset of the treatments. The higher order effects of multiple treatments are captured through a task embedding. The task embedding allows the model to scale to multiple treatments. The model is applied on real digital marketing dataset to evaluate the next best set of marketing actions. For evaluation, the model is compared against competitive baseline models on two semi-synthetic datasets created using the covariates from the real dataset. The performance is measured along four evaluation metrics considered in the causal inference literature and one proposed by us. The proposed evaluation metric measures the loss in the expected outcome when a particular model is used for decision making as compared to the ground truth. The proposed model outperforms the baselines along all five evaluation metrics. It outperforms the best baseline by over 30% along these evaluation metrics. The proposed approach is also shown to be robust when a subset of the confounders is not observed. The results on real data show the importance of the flexible modeling approach provided by the proposed model.","PeriodicalId":23013,"journal":{"name":"The World Wide Web Conference","volume":"8 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"Multiple Treatment Effect Estimation using Deep Generative Model with Task Embedding\",\"authors\":\"S. Saini, Sunny Dhamnani, Aakash Srinivasan, A. A. Ibrahim, Prithviraj Chavan\",\"doi\":\"10.1145/3308558.3313744\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Causal inference using observational data on multiple treatments is an important problem in a wide variety of fields. However, the existing literature tends to focus only on causal inference in case of binary or multinoulli treatments. These models are either incompatible with multiple treatments, or extending them to multiple treatments is computationally expensive. We use a previous formulation of causal inference using variational autoencoder (VAE) and propose a novel architecture to estimate the causal effect of any subset of the treatments. The higher order effects of multiple treatments are captured through a task embedding. The task embedding allows the model to scale to multiple treatments. The model is applied on real digital marketing dataset to evaluate the next best set of marketing actions. For evaluation, the model is compared against competitive baseline models on two semi-synthetic datasets created using the covariates from the real dataset. The performance is measured along four evaluation metrics considered in the causal inference literature and one proposed by us. The proposed evaluation metric measures the loss in the expected outcome when a particular model is used for decision making as compared to the ground truth. The proposed model outperforms the baselines along all five evaluation metrics. It outperforms the best baseline by over 30% along these evaluation metrics. The proposed approach is also shown to be robust when a subset of the confounders is not observed. The results on real data show the importance of the flexible modeling approach provided by the proposed model.\",\"PeriodicalId\":23013,\"journal\":{\"name\":\"The World Wide Web Conference\",\"volume\":\"8 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-05-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The World Wide Web Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3308558.3313744\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The World Wide Web Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3308558.3313744","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

摘要

利用多重治疗的观测数据进行因果推理在许多领域都是一个重要问题。然而,现有文献往往只关注二元或多oulli治疗的因果推理。这些模型要么与多种治疗不兼容,要么将它们扩展到多种治疗在计算上代价高昂。我们使用以前的因果推理公式,使用变分自编码器(VAE),并提出了一种新的架构来估计任何治疗子集的因果效应。通过任务嵌入捕获多个处理的高阶效应。任务嵌入允许模型扩展到多个处理。将该模型应用于真实的数字营销数据集,以评估次优营销行动集。为了进行评估,将模型与使用真实数据集的协变量创建的两个半合成数据集上的竞争性基线模型进行比较。绩效是根据因果推理文献中考虑的四个评估指标和我们提出的一个评估指标来衡量的。所提出的评价指标衡量了当使用特定模型进行决策时预期结果的损失,与实际情况相比。所建议的模型在所有五个评估指标上都优于基线。根据这些评估指标,它比最佳基线高出30%以上。当不观察到混杂因素的子集时,所提出的方法也显示出鲁棒性。实际数据的结果表明了该模型所提供的灵活建模方法的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Multiple Treatment Effect Estimation using Deep Generative Model with Task Embedding
Causal inference using observational data on multiple treatments is an important problem in a wide variety of fields. However, the existing literature tends to focus only on causal inference in case of binary or multinoulli treatments. These models are either incompatible with multiple treatments, or extending them to multiple treatments is computationally expensive. We use a previous formulation of causal inference using variational autoencoder (VAE) and propose a novel architecture to estimate the causal effect of any subset of the treatments. The higher order effects of multiple treatments are captured through a task embedding. The task embedding allows the model to scale to multiple treatments. The model is applied on real digital marketing dataset to evaluate the next best set of marketing actions. For evaluation, the model is compared against competitive baseline models on two semi-synthetic datasets created using the covariates from the real dataset. The performance is measured along four evaluation metrics considered in the causal inference literature and one proposed by us. The proposed evaluation metric measures the loss in the expected outcome when a particular model is used for decision making as compared to the ground truth. The proposed model outperforms the baselines along all five evaluation metrics. It outperforms the best baseline by over 30% along these evaluation metrics. The proposed approach is also shown to be robust when a subset of the confounders is not observed. The results on real data show the importance of the flexible modeling approach provided by the proposed model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Decoupled Smoothing on Graphs Think Outside the Dataset: Finding Fraudulent Reviews using Cross-Dataset Analysis Augmenting Knowledge Tracing by Considering Forgetting Behavior Enhancing Fashion Recommendation with Visual Compatibility Relationship Judging a Book by Its Cover: The Effect of Facial Perception on Centrality in Social Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1