{"title":"一种新的结构-运动歧义","authors":"J. Oliensis","doi":"10.1109/CVPR.1999.786937","DOIUrl":null,"url":null,"abstract":"This paper demonstrates the existence of a generic approximate ambiguity in Euclidean structure from motion (SFM) which applies to scenes with large depth variation. In projective SFM the ambiguity is absent, but the maximum-likelihood reconstruction is more likely to have occasional very large errors. The analysis gives a semi-quantitative characterization of the least-squares error surface over a domain complementary to that analyzed by Jepson/Heeger/Maybank.","PeriodicalId":20644,"journal":{"name":"Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149)","volume":"79 4 1","pages":"185-191 Vol. 1"},"PeriodicalIF":0.0000,"publicationDate":"1999-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"43","resultStr":"{\"title\":\"A new structure-from-motion ambiguity\",\"authors\":\"J. Oliensis\",\"doi\":\"10.1109/CVPR.1999.786937\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper demonstrates the existence of a generic approximate ambiguity in Euclidean structure from motion (SFM) which applies to scenes with large depth variation. In projective SFM the ambiguity is absent, but the maximum-likelihood reconstruction is more likely to have occasional very large errors. The analysis gives a semi-quantitative characterization of the least-squares error surface over a domain complementary to that analyzed by Jepson/Heeger/Maybank.\",\"PeriodicalId\":20644,\"journal\":{\"name\":\"Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149)\",\"volume\":\"79 4 1\",\"pages\":\"185-191 Vol. 1\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1999-06-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"43\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CVPR.1999.786937\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR.1999.786937","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
This paper demonstrates the existence of a generic approximate ambiguity in Euclidean structure from motion (SFM) which applies to scenes with large depth variation. In projective SFM the ambiguity is absent, but the maximum-likelihood reconstruction is more likely to have occasional very large errors. The analysis gives a semi-quantitative characterization of the least-squares error surface over a domain complementary to that analyzed by Jepson/Heeger/Maybank.