{"title":"盐水储层中盐石降水:数值模型预测与控制、淡水处理和油井生产制度优化","authors":"Aleksei Dmitrievitch Andryushchenko","doi":"10.2118/206645-ms","DOIUrl":null,"url":null,"abstract":"\n The aim of the work is to optimize the fresh water treatment design, frequency and production regimes (maximize NPV of the well operation) for wells with high NaCl content formation water (brines) production, which are very common for the Eastern Siberia, and forecast productivity index (PI) decline rates and production profiles for the wells by means of halite deposition model for brine flow in porous media united with fresh water treatment model and economic model.\n New numerical halite deposition model for brine flow in porous media is developed based on Darcy's law and equation of halite precipitation dynamics from formation water taking into account the fresh water treatments, solubility of descipitated halite in the fresh water and permeability profile. It enables to predict deposited halite saturation (Shalite), dynamic porosity and permeability radially and versus time. Thus, we can forecast PI versustime and unite production and economic models,vary fresh water treatment design, frequency andproduction regimes for the given geological conditions and to determine treatment design, frequency and production regimes that brings the maximum NPV.PI decline rates and exploitation factor are calculated and analyzed for different scenarios of the fresh water treatment design, frequency and production regimes.\n These main conclusions are made from the results of the work:","PeriodicalId":11177,"journal":{"name":"Day 4 Fri, October 15, 2021","volume":"7 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Halite Precipitation in Brine Reservoirs: Prediction and Control by Numerical Model, Optimization of the Fresh Water Treatments and Well Production Regimes\",\"authors\":\"Aleksei Dmitrievitch Andryushchenko\",\"doi\":\"10.2118/206645-ms\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n The aim of the work is to optimize the fresh water treatment design, frequency and production regimes (maximize NPV of the well operation) for wells with high NaCl content formation water (brines) production, which are very common for the Eastern Siberia, and forecast productivity index (PI) decline rates and production profiles for the wells by means of halite deposition model for brine flow in porous media united with fresh water treatment model and economic model.\\n New numerical halite deposition model for brine flow in porous media is developed based on Darcy's law and equation of halite precipitation dynamics from formation water taking into account the fresh water treatments, solubility of descipitated halite in the fresh water and permeability profile. It enables to predict deposited halite saturation (Shalite), dynamic porosity and permeability radially and versus time. Thus, we can forecast PI versustime and unite production and economic models,vary fresh water treatment design, frequency andproduction regimes for the given geological conditions and to determine treatment design, frequency and production regimes that brings the maximum NPV.PI decline rates and exploitation factor are calculated and analyzed for different scenarios of the fresh water treatment design, frequency and production regimes.\\n These main conclusions are made from the results of the work:\",\"PeriodicalId\":11177,\"journal\":{\"name\":\"Day 4 Fri, October 15, 2021\",\"volume\":\"7 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Day 4 Fri, October 15, 2021\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2118/206645-ms\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 4 Fri, October 15, 2021","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2118/206645-ms","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Halite Precipitation in Brine Reservoirs: Prediction and Control by Numerical Model, Optimization of the Fresh Water Treatments and Well Production Regimes
The aim of the work is to optimize the fresh water treatment design, frequency and production regimes (maximize NPV of the well operation) for wells with high NaCl content formation water (brines) production, which are very common for the Eastern Siberia, and forecast productivity index (PI) decline rates and production profiles for the wells by means of halite deposition model for brine flow in porous media united with fresh water treatment model and economic model.
New numerical halite deposition model for brine flow in porous media is developed based on Darcy's law and equation of halite precipitation dynamics from formation water taking into account the fresh water treatments, solubility of descipitated halite in the fresh water and permeability profile. It enables to predict deposited halite saturation (Shalite), dynamic porosity and permeability radially and versus time. Thus, we can forecast PI versustime and unite production and economic models,vary fresh water treatment design, frequency andproduction regimes for the given geological conditions and to determine treatment design, frequency and production regimes that brings the maximum NPV.PI decline rates and exploitation factor are calculated and analyzed for different scenarios of the fresh water treatment design, frequency and production regimes.
These main conclusions are made from the results of the work: