{"title":"平面结构健康监测数字间换能器的计算机辅助原型设计","authors":"M. Manka, Ł. Ambroziński, Tadeusz Uhl","doi":"10.7494/MECH.2013.32.2.69","DOIUrl":null,"url":null,"abstract":"In recent years an intensive research activity into the application of guided waves (GWs) for structural health monitoring (SHM) can be observed. For instance, Lamb waves (LWs) have shown a great potential in monitoring of thin, planar structures. However, due to the dispersive and multimodal nature of the LWs, their snapshots can consist of many pulses even for an intact structure, which makes damage detection very complex. Moreover, small PZT transducers, most commonly used in SHM systems, act normally as omni-directional wave sources; therefore, dense or sparse transducers networks are required for damage localization. Some of the above-mentioned drawbacks of single PZT emitters and sensors can be overcome using interdigital transducers (IDT) designed to excite and sense a single, selected mode. The mode-tuning is performed by changing the span of finger electrodes to match the wavelength of the excited mode for the selected frequency. An IDT is a directional source, therefore, it generates a wave steered to the direction perpendicular to the electrodes. The width of the excited main lobe can be determined by the length of the electrodes. Since many parameters of the IDTs influence the LWs propagation, techniques for the simulation of the wave excitation and propagation are needed. In the paper, numerical tools for the computer aided design and virtual prototyping of the IDTs are presented. The simulation technique is based on the frequency-dependent transfer function of the structure, and due to its computational efficiency it can be used for fast testing of IDTs’ performance and for preliminary transducer design for further finite element simulations, and prototyping.","PeriodicalId":38333,"journal":{"name":"International Journal of Mechanics and Control","volume":"102 1","pages":"69"},"PeriodicalIF":0.0000,"publicationDate":"2013-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Computer-aided prototyping of interdigital transducers for the structural health monitoring of planar structures\",\"authors\":\"M. Manka, Ł. Ambroziński, Tadeusz Uhl\",\"doi\":\"10.7494/MECH.2013.32.2.69\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In recent years an intensive research activity into the application of guided waves (GWs) for structural health monitoring (SHM) can be observed. For instance, Lamb waves (LWs) have shown a great potential in monitoring of thin, planar structures. However, due to the dispersive and multimodal nature of the LWs, their snapshots can consist of many pulses even for an intact structure, which makes damage detection very complex. Moreover, small PZT transducers, most commonly used in SHM systems, act normally as omni-directional wave sources; therefore, dense or sparse transducers networks are required for damage localization. Some of the above-mentioned drawbacks of single PZT emitters and sensors can be overcome using interdigital transducers (IDT) designed to excite and sense a single, selected mode. The mode-tuning is performed by changing the span of finger electrodes to match the wavelength of the excited mode for the selected frequency. An IDT is a directional source, therefore, it generates a wave steered to the direction perpendicular to the electrodes. The width of the excited main lobe can be determined by the length of the electrodes. Since many parameters of the IDTs influence the LWs propagation, techniques for the simulation of the wave excitation and propagation are needed. In the paper, numerical tools for the computer aided design and virtual prototyping of the IDTs are presented. The simulation technique is based on the frequency-dependent transfer function of the structure, and due to its computational efficiency it can be used for fast testing of IDTs’ performance and for preliminary transducer design for further finite element simulations, and prototyping.\",\"PeriodicalId\":38333,\"journal\":{\"name\":\"International Journal of Mechanics and Control\",\"volume\":\"102 1\",\"pages\":\"69\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Mechanics and Control\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7494/MECH.2013.32.2.69\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Mechanics and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7494/MECH.2013.32.2.69","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
Computer-aided prototyping of interdigital transducers for the structural health monitoring of planar structures
In recent years an intensive research activity into the application of guided waves (GWs) for structural health monitoring (SHM) can be observed. For instance, Lamb waves (LWs) have shown a great potential in monitoring of thin, planar structures. However, due to the dispersive and multimodal nature of the LWs, their snapshots can consist of many pulses even for an intact structure, which makes damage detection very complex. Moreover, small PZT transducers, most commonly used in SHM systems, act normally as omni-directional wave sources; therefore, dense or sparse transducers networks are required for damage localization. Some of the above-mentioned drawbacks of single PZT emitters and sensors can be overcome using interdigital transducers (IDT) designed to excite and sense a single, selected mode. The mode-tuning is performed by changing the span of finger electrodes to match the wavelength of the excited mode for the selected frequency. An IDT is a directional source, therefore, it generates a wave steered to the direction perpendicular to the electrodes. The width of the excited main lobe can be determined by the length of the electrodes. Since many parameters of the IDTs influence the LWs propagation, techniques for the simulation of the wave excitation and propagation are needed. In the paper, numerical tools for the computer aided design and virtual prototyping of the IDTs are presented. The simulation technique is based on the frequency-dependent transfer function of the structure, and due to its computational efficiency it can be used for fast testing of IDTs’ performance and for preliminary transducer design for further finite element simulations, and prototyping.