{"title":"变压器局部放电模式识别的在线顺序极值学习机","authors":"Qinqin Zhang, Hui Song, G. Sheng","doi":"10.1109/TDC.2018.8440451","DOIUrl":null,"url":null,"abstract":"Traditional pattern recognition algorithms have limitations including slow training speed and low recognition accuracy in practical engineering applications. In this paper, a new method based on Online Sequential Extreme Learning Machine (OS-ELM) is proposed. Data samples have been obtained from PD experiment of real transformer based on Ultra High Frequency (UHF) detection method. In addition, OS-ELM is compared with Extreme Learning Machine (ELM), Support Vector Machine (SVM) and Back Propagation Neural Network (BPNN) in both recognition accuracy and performance aspects. The results show that OS-ELM is not only much faster in learning speed, but also more excellent in recognition accuracy, thus more suitable for engineering applications with large volume of data samples.","PeriodicalId":6568,"journal":{"name":"2018 IEEE/PES Transmission and Distribution Conference and Exposition (T&D)","volume":"104 1","pages":"1-9"},"PeriodicalIF":0.0000,"publicationDate":"2018-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Online Sequential Extreme Learning Machine for Partial Discharge Pattern Recognition of Transformer\",\"authors\":\"Qinqin Zhang, Hui Song, G. Sheng\",\"doi\":\"10.1109/TDC.2018.8440451\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Traditional pattern recognition algorithms have limitations including slow training speed and low recognition accuracy in practical engineering applications. In this paper, a new method based on Online Sequential Extreme Learning Machine (OS-ELM) is proposed. Data samples have been obtained from PD experiment of real transformer based on Ultra High Frequency (UHF) detection method. In addition, OS-ELM is compared with Extreme Learning Machine (ELM), Support Vector Machine (SVM) and Back Propagation Neural Network (BPNN) in both recognition accuracy and performance aspects. The results show that OS-ELM is not only much faster in learning speed, but also more excellent in recognition accuracy, thus more suitable for engineering applications with large volume of data samples.\",\"PeriodicalId\":6568,\"journal\":{\"name\":\"2018 IEEE/PES Transmission and Distribution Conference and Exposition (T&D)\",\"volume\":\"104 1\",\"pages\":\"1-9\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE/PES Transmission and Distribution Conference and Exposition (T&D)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TDC.2018.8440451\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE/PES Transmission and Distribution Conference and Exposition (T&D)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TDC.2018.8440451","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Online Sequential Extreme Learning Machine for Partial Discharge Pattern Recognition of Transformer
Traditional pattern recognition algorithms have limitations including slow training speed and low recognition accuracy in practical engineering applications. In this paper, a new method based on Online Sequential Extreme Learning Machine (OS-ELM) is proposed. Data samples have been obtained from PD experiment of real transformer based on Ultra High Frequency (UHF) detection method. In addition, OS-ELM is compared with Extreme Learning Machine (ELM), Support Vector Machine (SVM) and Back Propagation Neural Network (BPNN) in both recognition accuracy and performance aspects. The results show that OS-ELM is not only much faster in learning speed, but also more excellent in recognition accuracy, thus more suitable for engineering applications with large volume of data samples.