硅酸盐水泥压实风化粘土页岩混合料抗剪强度及耐久性研究

P. T. Simatupang, Idrus M. Alatas, Ayu K. Redyananda, Eko A. Purnomo
{"title":"硅酸盐水泥压实风化粘土页岩混合料抗剪强度及耐久性研究","authors":"P. T. Simatupang, Idrus M. Alatas, Ayu K. Redyananda, Eko A. Purnomo","doi":"10.22146/jcef.3491","DOIUrl":null,"url":null,"abstract":"The use of weathered clay shale often has the potential to cause geotechnical problems as an embankment material, especially slope failures. In order for weathered clay shale to be used as embankment material, the weathered clay shale must be mixed with other materials. An example of a widely used mix is a mix with a Portland cement (PC). In general, this mixture will increase the shear strength of the embankment material. In addition to shear strength, it is very important to investigate whether the material mixture is susceptible to durability. Therefore, this study aims to evaluate the shear strength and durability behaviors of weathered clay shale mixture, using PC. The percentage of this cement was varied and did not exceed 20%, with the mixing material also compacted based on Proctor Standard procedure. This test included the determination of shear strength and durability index at the smaller and larger (dry and wet sides) than optimum moisture content (OMC). Shear strength and durability index were determined by Triaxial and slake durability index tests, respectively. The results showed that the weathered clay mixture with 10% PC and 8% larger OMC led to an increase in the normalized shear strength (∆σ/σ) and durability index at approximately 300% and 24%, respectively, compared to the original clay shale. This indicated that the optimum shear strength and durability of this shale mixture were highly observed at 10% PC and 8% larger OMC (wet side). This verified also although the durability index increased by 97% with the addition of 20% PC, whose utilization was found to be unrealistic","PeriodicalId":31890,"journal":{"name":"Journal of the Civil Engineering Forum","volume":"30 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Shear Strength and Durability Behaviors of Compacted Weathered Clay Shale Mixture Using Portland Cement\",\"authors\":\"P. T. Simatupang, Idrus M. Alatas, Ayu K. Redyananda, Eko A. Purnomo\",\"doi\":\"10.22146/jcef.3491\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The use of weathered clay shale often has the potential to cause geotechnical problems as an embankment material, especially slope failures. In order for weathered clay shale to be used as embankment material, the weathered clay shale must be mixed with other materials. An example of a widely used mix is a mix with a Portland cement (PC). In general, this mixture will increase the shear strength of the embankment material. In addition to shear strength, it is very important to investigate whether the material mixture is susceptible to durability. Therefore, this study aims to evaluate the shear strength and durability behaviors of weathered clay shale mixture, using PC. The percentage of this cement was varied and did not exceed 20%, with the mixing material also compacted based on Proctor Standard procedure. This test included the determination of shear strength and durability index at the smaller and larger (dry and wet sides) than optimum moisture content (OMC). Shear strength and durability index were determined by Triaxial and slake durability index tests, respectively. The results showed that the weathered clay mixture with 10% PC and 8% larger OMC led to an increase in the normalized shear strength (∆σ/σ) and durability index at approximately 300% and 24%, respectively, compared to the original clay shale. This indicated that the optimum shear strength and durability of this shale mixture were highly observed at 10% PC and 8% larger OMC (wet side). This verified also although the durability index increased by 97% with the addition of 20% PC, whose utilization was found to be unrealistic\",\"PeriodicalId\":31890,\"journal\":{\"name\":\"Journal of the Civil Engineering Forum\",\"volume\":\"30 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Civil Engineering Forum\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22146/jcef.3491\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Civil Engineering Forum","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22146/jcef.3491","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

使用风化粘土页岩作为堤防材料往往有可能引起岩土工程问题,特别是边坡破坏。风化粘土页岩要用作路堤材料,必须与其他材料混合。广泛使用的混合物的一个例子是波特兰水泥(PC)的混合物。一般来说,这种混合物会增加路堤材料的抗剪强度。除了抗剪强度外,研究材料混合物是否易受耐久性影响也非常重要。因此,本研究旨在利用PC对风化粘土-页岩混合料的抗剪强度和耐久性进行评价。该水泥的百分比是不同的,不超过20%,混合材料也根据普罗克特标准程序压实。该试验包括测定比最佳含水率(OMC)更小和更大(干、湿侧)的抗剪强度和耐久性指标。剪切强度和耐久性指标分别通过三轴试验和湖泊耐久性指标试验确定。结果表明:掺加10% PC和8% OMC的混合风化粘土,其归一化抗剪强度(∆σ/σ)和耐久性指数分别比原始粘土页岩提高约300%和24%;这表明,该页岩混合物的最佳抗剪强度和耐久性在10% PC和8%大的OMC(湿侧)时得到了很高的观察。这也证实了耐久性指数增加了97%,添加20%的PC,其利用率被发现是不现实的
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Shear Strength and Durability Behaviors of Compacted Weathered Clay Shale Mixture Using Portland Cement
The use of weathered clay shale often has the potential to cause geotechnical problems as an embankment material, especially slope failures. In order for weathered clay shale to be used as embankment material, the weathered clay shale must be mixed with other materials. An example of a widely used mix is a mix with a Portland cement (PC). In general, this mixture will increase the shear strength of the embankment material. In addition to shear strength, it is very important to investigate whether the material mixture is susceptible to durability. Therefore, this study aims to evaluate the shear strength and durability behaviors of weathered clay shale mixture, using PC. The percentage of this cement was varied and did not exceed 20%, with the mixing material also compacted based on Proctor Standard procedure. This test included the determination of shear strength and durability index at the smaller and larger (dry and wet sides) than optimum moisture content (OMC). Shear strength and durability index were determined by Triaxial and slake durability index tests, respectively. The results showed that the weathered clay mixture with 10% PC and 8% larger OMC led to an increase in the normalized shear strength (∆σ/σ) and durability index at approximately 300% and 24%, respectively, compared to the original clay shale. This indicated that the optimum shear strength and durability of this shale mixture were highly observed at 10% PC and 8% larger OMC (wet side). This verified also although the durability index increased by 97% with the addition of 20% PC, whose utilization was found to be unrealistic
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
20
审稿时长
15 weeks
期刊最新文献
Airline Choice Decision for Jakarta-Denpasar Route During the Covid-19 Pandemic Comparative Seismic Analysis of G+20 RC Framed Structure Building for with and without Shear Walls Proposal and Evaluation of Vertical Vibration Theory of Air Caster Seismic Vulnerability Assessment of Regular and Vertically Irregular Residential Buildings in Nepal Numerical Study on the Effects of Helix Diameter and Spacing on the Helical Pile Axial Bearing Capacity in Cohesionless Soils
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1