用于水和气控制的旋风式自动入流控制装置:仿真驱动设计

G. Chochua, A. Rudic, Amrendra Kumar, Aurélien Mainy, G. Woiceshyn
{"title":"用于水和气控制的旋风式自动入流控制装置:仿真驱动设计","authors":"G. Chochua, A. Rudic, Amrendra Kumar, Aurélien Mainy, G. Woiceshyn","doi":"10.2118/192723-MS","DOIUrl":null,"url":null,"abstract":"\n Horizontal wells are considered superior to vertical and deviated wells because they increase reservoir contact; however, they can cone unwanted fluids (gas, water) causing reduced oil recovery and early well abandonment. Inflow Control Devices (ICDs) are typically installed along the completion string to delay coning and restrict water/gas influx. Once the coning occurs, conventional ICDs, such as channels and orifices, were found to be inadequate in choking back the unwanted fluids. Thus, new types of \"autonomous\" ICDs, or AICDs, were developed that choke back unwanted fluids more than conventional ICDs. Conversely, such AICDs have limitations related to bulkiness, moving parts, wellsite adjustability, flow performance predictability, and erosion.\n To overcome these limitations, a new AICD, operating on a principle of a cyclone, was developed by a synergy of the latest numerical technologies, such as Computational Fluid Dynamics (CFD) utilizing a high-fidelity Large Eddy Simulation (LES) turbulence model, and Design of Experiments (DOE) techniques. This CFD-driven design optimization involved utilization of high-performance computing (HPC) coupled with experimental validation. A DOE matrix of CFD analyses runs was performed to identify a geometry that would generate significantly higher pressure drop for water and gas than for oil.\n Early multiphase testing on a prototype device validated the concept, and CFD was used to improve the understanding of the operating principle and hence the design. CFD was further used to extrapolate the flow performance to a wider range of operating conditions. An expanded flow performance map and the use of non-dimensional parameters led to the development of a mechanistic AICD performance model which further enhanced our understanding of AICDs and allowed reservoir software programs to evaluate the production performance of wells with AICDs versus wells with conventional ICDs or no inflow control. The overall result is the new cyclonic AICD presented herein which is: 1) relatively compact, 2) without moving parts, 3) erosion resistant, 4) superior in multiphase performance, 5) easily adjustable at the wellsite with many settings, 6) accurately modeled with CFD, and 7) easy to incorporate into state-of-the-art reservoir simulation models.","PeriodicalId":11014,"journal":{"name":"Day 1 Mon, November 12, 2018","volume":"13 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Cyclone Type Autonomous Inflow Control Device for Water and Gas Control: Simulation-Driven Design\",\"authors\":\"G. Chochua, A. Rudic, Amrendra Kumar, Aurélien Mainy, G. Woiceshyn\",\"doi\":\"10.2118/192723-MS\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Horizontal wells are considered superior to vertical and deviated wells because they increase reservoir contact; however, they can cone unwanted fluids (gas, water) causing reduced oil recovery and early well abandonment. Inflow Control Devices (ICDs) are typically installed along the completion string to delay coning and restrict water/gas influx. Once the coning occurs, conventional ICDs, such as channels and orifices, were found to be inadequate in choking back the unwanted fluids. Thus, new types of \\\"autonomous\\\" ICDs, or AICDs, were developed that choke back unwanted fluids more than conventional ICDs. Conversely, such AICDs have limitations related to bulkiness, moving parts, wellsite adjustability, flow performance predictability, and erosion.\\n To overcome these limitations, a new AICD, operating on a principle of a cyclone, was developed by a synergy of the latest numerical technologies, such as Computational Fluid Dynamics (CFD) utilizing a high-fidelity Large Eddy Simulation (LES) turbulence model, and Design of Experiments (DOE) techniques. This CFD-driven design optimization involved utilization of high-performance computing (HPC) coupled with experimental validation. A DOE matrix of CFD analyses runs was performed to identify a geometry that would generate significantly higher pressure drop for water and gas than for oil.\\n Early multiphase testing on a prototype device validated the concept, and CFD was used to improve the understanding of the operating principle and hence the design. CFD was further used to extrapolate the flow performance to a wider range of operating conditions. An expanded flow performance map and the use of non-dimensional parameters led to the development of a mechanistic AICD performance model which further enhanced our understanding of AICDs and allowed reservoir software programs to evaluate the production performance of wells with AICDs versus wells with conventional ICDs or no inflow control. The overall result is the new cyclonic AICD presented herein which is: 1) relatively compact, 2) without moving parts, 3) erosion resistant, 4) superior in multiphase performance, 5) easily adjustable at the wellsite with many settings, 6) accurately modeled with CFD, and 7) easy to incorporate into state-of-the-art reservoir simulation models.\",\"PeriodicalId\":11014,\"journal\":{\"name\":\"Day 1 Mon, November 12, 2018\",\"volume\":\"13 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Day 1 Mon, November 12, 2018\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2118/192723-MS\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 1 Mon, November 12, 2018","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2118/192723-MS","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

水平井被认为优于直井和斜井,因为它们增加了储层接触;然而,它们可能会进入不需要的流体(气、水),导致采收率降低和早期弃井。流入控制装置(icd)通常安装在完井管柱上,以延迟锥度并限制水/气的流入。一旦发生锥入,传统的icd(如通道和孔口)就无法将不需要的流体堵塞。因此,新型的“自主”icd (aicd)被开发出来,与传统的icd相比,它能更好地抑制不需要的液体。相反,此类aicd在体积、活动部件、井场可调节性、流动性能可预测性和侵蚀等方面存在局限性。为了克服这些限制,利用最新的数值技术,如利用高保真大涡模拟(LES)湍流模型的计算流体动力学(CFD)和实验设计(DOE)技术,开发了一种基于旋风原理的新型AICD。这种cfd驱动的设计优化涉及高性能计算(HPC)的利用以及实验验证。通过CFD分析的DOE矩阵,确定了水和气的压降明显高于油的几何形状。在原型设备上进行的早期多阶段测试验证了这一概念,并使用CFD来提高对工作原理和设计的理解。进一步使用CFD来推断更大范围的操作条件下的流动性能。扩展的流量动态图和无量纲参数的使用使得AICD力学性能模型得以发展,该模型进一步加深了我们对AICD的理解,并允许油藏软件程序评估安装AICD的井与安装常规icd或没有流入控制的井的生产性能。总体而言,本文提出的新型气旋式AICD具有以下特点:1)相对紧凑,2)没有活动部件,3)耐腐蚀,4)多相性能优越,5)易于在井场进行多种设置调节,6)使用CFD精确建模,7)易于纳入最先进的油藏模拟模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Cyclone Type Autonomous Inflow Control Device for Water and Gas Control: Simulation-Driven Design
Horizontal wells are considered superior to vertical and deviated wells because they increase reservoir contact; however, they can cone unwanted fluids (gas, water) causing reduced oil recovery and early well abandonment. Inflow Control Devices (ICDs) are typically installed along the completion string to delay coning and restrict water/gas influx. Once the coning occurs, conventional ICDs, such as channels and orifices, were found to be inadequate in choking back the unwanted fluids. Thus, new types of "autonomous" ICDs, or AICDs, were developed that choke back unwanted fluids more than conventional ICDs. Conversely, such AICDs have limitations related to bulkiness, moving parts, wellsite adjustability, flow performance predictability, and erosion. To overcome these limitations, a new AICD, operating on a principle of a cyclone, was developed by a synergy of the latest numerical technologies, such as Computational Fluid Dynamics (CFD) utilizing a high-fidelity Large Eddy Simulation (LES) turbulence model, and Design of Experiments (DOE) techniques. This CFD-driven design optimization involved utilization of high-performance computing (HPC) coupled with experimental validation. A DOE matrix of CFD analyses runs was performed to identify a geometry that would generate significantly higher pressure drop for water and gas than for oil. Early multiphase testing on a prototype device validated the concept, and CFD was used to improve the understanding of the operating principle and hence the design. CFD was further used to extrapolate the flow performance to a wider range of operating conditions. An expanded flow performance map and the use of non-dimensional parameters led to the development of a mechanistic AICD performance model which further enhanced our understanding of AICDs and allowed reservoir software programs to evaluate the production performance of wells with AICDs versus wells with conventional ICDs or no inflow control. The overall result is the new cyclonic AICD presented herein which is: 1) relatively compact, 2) without moving parts, 3) erosion resistant, 4) superior in multiphase performance, 5) easily adjustable at the wellsite with many settings, 6) accurately modeled with CFD, and 7) easy to incorporate into state-of-the-art reservoir simulation models.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Does the kappa number method accurately reflect lignin content in nonwood pulps? Using multistage models to evaluate how pulp washing after the first extraction stage impacts elemental chlorine-free bleach demand Understanding the risks and rewards of using 50% vs. 10% strength peroxide in pulp bleach plants Understanding the pulping and bleaching performances of eucalyptus woods affected by physiological disturbance Measurements of the Inorganic Scale Buildup Rate on Downhole Completion Equipment – Debris Barrier Screens
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1