基于声誉的垃圾邮件过滤协同方法

Wenxuan Shi , Maoqiang Xie
{"title":"基于声誉的垃圾邮件过滤协同方法","authors":"Wenxuan Shi ,&nbsp;Maoqiang Xie","doi":"10.1016/j.aasri.2013.10.082","DOIUrl":null,"url":null,"abstract":"<div><p>Spam and spam filters are contrarious components of a complex interdependent social ecosystem. Traditional spam filtering techniques or systems are usually designed and deployed individually that neglect the distributed and bulk characteristics of spam. This paper proposes a reputation-based collaborative anti-spam approach. This approach, adopting fingerprinting technique, evaluating reporters’ trust, achieved better performance and robustness than the state-of-the-art in comparison experiments on several known email corpora.</p></div>","PeriodicalId":100008,"journal":{"name":"AASRI Procedia","volume":"5 ","pages":"Pages 220-227"},"PeriodicalIF":0.0000,"publicationDate":"2013-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.aasri.2013.10.082","citationCount":"9","resultStr":"{\"title\":\"A Reputation-based Collaborative Approach for Spam Filtering\",\"authors\":\"Wenxuan Shi ,&nbsp;Maoqiang Xie\",\"doi\":\"10.1016/j.aasri.2013.10.082\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Spam and spam filters are contrarious components of a complex interdependent social ecosystem. Traditional spam filtering techniques or systems are usually designed and deployed individually that neglect the distributed and bulk characteristics of spam. This paper proposes a reputation-based collaborative anti-spam approach. This approach, adopting fingerprinting technique, evaluating reporters’ trust, achieved better performance and robustness than the state-of-the-art in comparison experiments on several known email corpora.</p></div>\",\"PeriodicalId\":100008,\"journal\":{\"name\":\"AASRI Procedia\",\"volume\":\"5 \",\"pages\":\"Pages 220-227\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.aasri.2013.10.082\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AASRI Procedia\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2212671613000838\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AASRI Procedia","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2212671613000838","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

垃圾邮件和垃圾邮件过滤器是复杂的相互依赖的社会生态系统中相互矛盾的组成部分。传统的垃圾邮件过滤技术或系统通常是单独设计和部署的,忽略了垃圾邮件的分布式和批量特征。本文提出了一种基于信誉的协同反垃圾邮件方法。在几个已知的电子邮件语料库的对比实验中,该方法采用指纹技术来评估记者的信任,取得了比现有方法更好的性能和鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Reputation-based Collaborative Approach for Spam Filtering

Spam and spam filters are contrarious components of a complex interdependent social ecosystem. Traditional spam filtering techniques or systems are usually designed and deployed individually that neglect the distributed and bulk characteristics of spam. This paper proposes a reputation-based collaborative anti-spam approach. This approach, adopting fingerprinting technique, evaluating reporters’ trust, achieved better performance and robustness than the state-of-the-art in comparison experiments on several known email corpora.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Preface Preface Preface Preface Classification of Wild Animals based on SVM and Local Descriptors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1