Mn3-xPt1+x共线性到三角形反铁磁跃迁的低压驱动气压效应

IF 3.3 3区 物理与天体物理 Q2 PHYSICS, CONDENSED MATTER Superlattices and Microstructures Pub Date : 2023-01-01 DOI:10.20517/microstructures.2022.46
Xueting Zhao, Kun Zhang, Ji Qi, Peng Liu, Zhao Zhang, Lin Qu, Zhidong Zhang, Bing Li
{"title":"Mn3-xPt1+x共线性到三角形反铁磁跃迁的低压驱动气压效应","authors":"Xueting Zhao, Kun Zhang, Ji Qi, Peng Liu, Zhao Zhang, Lin Qu, Zhidong Zhang, Bing Li","doi":"10.20517/microstructures.2022.46","DOIUrl":null,"url":null,"abstract":"A large driving pressure is required for barocaloric effects (BCEs) in intermetallics, usually above 100 MPa. Here, we report barocaloric effects in Mn3-xPt1+xalloys saturated at about 60 MPa, the lowest pressure reported in intermetallics to date. A first-order phase transition occurs from the colinear antiferromagnetic phase to the triangular antiferromagnetic phase as temperature decreases. The transition temperature strongly depends on the composition x, ranging from 331 K for x = 0.18 to 384 K for x = 0.04, and is sensitive to pressure, with dTt/dP up to 139 K/GPa. However, the maximum pressure-induced entropy changes are as small as 13.79 J kg-1 K-1, attributed to the mutual cancellation of lattice and magnetic entropy changes. The small driving pressure and total entropy changes are due to the special magnetic geometric frustration.","PeriodicalId":22044,"journal":{"name":"Superlattices and Microstructures","volume":"45 1","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Low-pressure-driven barocaloric effects at colinear-to-triangular antiferromagnetic transitions in Mn3-xPt1+x\",\"authors\":\"Xueting Zhao, Kun Zhang, Ji Qi, Peng Liu, Zhao Zhang, Lin Qu, Zhidong Zhang, Bing Li\",\"doi\":\"10.20517/microstructures.2022.46\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A large driving pressure is required for barocaloric effects (BCEs) in intermetallics, usually above 100 MPa. Here, we report barocaloric effects in Mn3-xPt1+xalloys saturated at about 60 MPa, the lowest pressure reported in intermetallics to date. A first-order phase transition occurs from the colinear antiferromagnetic phase to the triangular antiferromagnetic phase as temperature decreases. The transition temperature strongly depends on the composition x, ranging from 331 K for x = 0.18 to 384 K for x = 0.04, and is sensitive to pressure, with dTt/dP up to 139 K/GPa. However, the maximum pressure-induced entropy changes are as small as 13.79 J kg-1 K-1, attributed to the mutual cancellation of lattice and magnetic entropy changes. The small driving pressure and total entropy changes are due to the special magnetic geometric frustration.\",\"PeriodicalId\":22044,\"journal\":{\"name\":\"Superlattices and Microstructures\",\"volume\":\"45 1\",\"pages\":\"\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Superlattices and Microstructures\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.20517/microstructures.2022.46\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, CONDENSED MATTER\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Superlattices and Microstructures","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.20517/microstructures.2022.46","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0

摘要

金属间化合物的压热效应(BCEs)需要较大的驱动压力,通常在100mpa以上。在这里,我们报道了Mn3-xPt1+ x合金在60 MPa左右饱和时的气压效应,这是迄今为止金属间化合物中报道的最低压力。随着温度的降低,一阶相变由共线性反铁磁相向三角形反铁磁相转变。转变温度强烈依赖于x的组成,范围从331 K (x = 0.18)到384 K (x = 0.04),并且对压力敏感,dTt/dP高达139 K/GPa。然而,由于晶格和磁熵变化相互抵消,压力诱导的最大熵变化很小,仅为13.79 J kg-1 K-1。驱动压力和总熵变化较小是由于特殊的磁几何挫败。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Low-pressure-driven barocaloric effects at colinear-to-triangular antiferromagnetic transitions in Mn3-xPt1+x
A large driving pressure is required for barocaloric effects (BCEs) in intermetallics, usually above 100 MPa. Here, we report barocaloric effects in Mn3-xPt1+xalloys saturated at about 60 MPa, the lowest pressure reported in intermetallics to date. A first-order phase transition occurs from the colinear antiferromagnetic phase to the triangular antiferromagnetic phase as temperature decreases. The transition temperature strongly depends on the composition x, ranging from 331 K for x = 0.18 to 384 K for x = 0.04, and is sensitive to pressure, with dTt/dP up to 139 K/GPa. However, the maximum pressure-induced entropy changes are as small as 13.79 J kg-1 K-1, attributed to the mutual cancellation of lattice and magnetic entropy changes. The small driving pressure and total entropy changes are due to the special magnetic geometric frustration.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Superlattices and Microstructures
Superlattices and Microstructures 物理-物理:凝聚态物理
CiteScore
6.10
自引率
3.20%
发文量
35
审稿时长
2.8 months
期刊介绍: Micro and Nanostructures is a journal disseminating the science and technology of micro-structures and nano-structures in materials and their devices, including individual and collective use of semiconductors, metals and insulators for the exploitation of their unique properties. The journal hosts papers dealing with fundamental and applied experimental research as well as theoretical studies. Fields of interest, including emerging ones, cover: • Novel micro and nanostructures • Nanomaterials (nanowires, nanodots, 2D materials ) and devices • Synthetic heterostructures • Plasmonics • Micro and nano-defects in materials (semiconductor, metal and insulators) • Surfaces and interfaces of thin films In addition to Research Papers, the journal aims at publishing Topical Reviews providing insights into rapidly evolving or more mature fields. Written by leading researchers in their respective fields, those articles are commissioned by the Editorial Board. Formerly known as Superlattices and Microstructures, with a 2021 IF of 3.22 and 2021 CiteScore of 5.4
期刊最新文献
Temperature dependence of dielectric nonlinearity of BaTiO3 ceramics Influence of hydrogel and porous scaffold on the magnetic thermal property and anticancer effect of Fe3O4 nanoparticles Magnetic structures and correlated physical properties in antiperovskites Cryogenic atom probe tomography and its applications: a review Scanning transmission electron microscopy for advanced characterization of ferroic materials
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1