分类法使用集团渗透法建立威胁观测站

Romina Torres, Nicolás González, Mathías Cabrera, Rodrigo Salas
{"title":"分类法使用集团渗透法建立威胁观测站","authors":"Romina Torres, Nicolás González, Mathías Cabrera, Rodrigo Salas","doi":"10.1109/CLEI53233.2021.9639945","DOIUrl":null,"url":null,"abstract":"Cyberattacks are increasing every day, demanding that security incident response teams proactively determine potential threats early. Although social networks such as Twitter are a rich and up-to-date source of information where users use to tweet about different topics, it is complex to efficiently and effectively obtain results that support decision-making on a specific subject, such as cyberattacks. Therefore, in this work, we propose to use an offline mining process based on the clique percolation method over a corpus of tweets in order to generate an indexed knowledge base about cyberattacks. Results are promising to observe threats under evolution. Then, to show results properly, we generate an observatory prototype to allow cybersecurity researchers to explore threats over time and space.","PeriodicalId":6803,"journal":{"name":"2021 XLVII Latin American Computing Conference (CLEI)","volume":"1 1","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Taxonomies using the clique percolation method for building a threats observatory\",\"authors\":\"Romina Torres, Nicolás González, Mathías Cabrera, Rodrigo Salas\",\"doi\":\"10.1109/CLEI53233.2021.9639945\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Cyberattacks are increasing every day, demanding that security incident response teams proactively determine potential threats early. Although social networks such as Twitter are a rich and up-to-date source of information where users use to tweet about different topics, it is complex to efficiently and effectively obtain results that support decision-making on a specific subject, such as cyberattacks. Therefore, in this work, we propose to use an offline mining process based on the clique percolation method over a corpus of tweets in order to generate an indexed knowledge base about cyberattacks. Results are promising to observe threats under evolution. Then, to show results properly, we generate an observatory prototype to allow cybersecurity researchers to explore threats over time and space.\",\"PeriodicalId\":6803,\"journal\":{\"name\":\"2021 XLVII Latin American Computing Conference (CLEI)\",\"volume\":\"1 1\",\"pages\":\"1-5\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 XLVII Latin American Computing Conference (CLEI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CLEI53233.2021.9639945\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 XLVII Latin American Computing Conference (CLEI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CLEI53233.2021.9639945","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

网络攻击每天都在增加,要求安全事件响应团队提前主动确定潜在威胁。尽管像Twitter这样的社交网络是一个丰富的、最新的信息来源,用户可以在其中发布关于不同主题的推文,但要有效地获得支持特定主题(如网络攻击)决策的结果是很复杂的。因此,在这项工作中,我们建议在推文语料库上使用基于派系渗透方法的离线挖掘过程,以生成一个关于网络攻击的索引知识库。研究结果很有希望观察到进化过程中的威胁。然后,为了正确显示结果,我们生成了一个观测站原型,允许网络安全研究人员探索时间和空间上的威胁。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Taxonomies using the clique percolation method for building a threats observatory
Cyberattacks are increasing every day, demanding that security incident response teams proactively determine potential threats early. Although social networks such as Twitter are a rich and up-to-date source of information where users use to tweet about different topics, it is complex to efficiently and effectively obtain results that support decision-making on a specific subject, such as cyberattacks. Therefore, in this work, we propose to use an offline mining process based on the clique percolation method over a corpus of tweets in order to generate an indexed knowledge base about cyberattacks. Results are promising to observe threats under evolution. Then, to show results properly, we generate an observatory prototype to allow cybersecurity researchers to explore threats over time and space.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Structured Text Generation for Spanish Freestyle Battles using Neural Networks Learning factory for the Software Engineering area: First didactic transformation An Early Alert System for Software Vulnerabilities based on Vulnerability Repositories and Social Networks Data Quality Management oriented to the Electronic Medical Record Program Committees
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1