不同环境土壤样品中生物表面活性剂产菌的分离与鉴定

Abrar Hussain Mian
{"title":"不同环境土壤样品中生物表面活性剂产菌的分离与鉴定","authors":"Abrar Hussain Mian","doi":"10.55124/jtes.v1i1.133","DOIUrl":null,"url":null,"abstract":"Biosurfactants are natural substances produced by several bacterial and fungal organisms that are amphiphilic and are extracellular (a part of the cell membrane). Biosurfactants can reduce the stress between solids and liquids on the surface and at the end. Biosurfactants have several properties, i.e. they are stable, less harmful, as well as readily degradable, and extremely eco-friendly. Biosurfactants also have a wide range of industrial uses because they are a versatile category of chemical substances. The principal justification for conducting such research was the isolation of possible biosurfactants containing bacteria. Sampling was performed for the isolation of bacteria producing biosurfactants from different oil-polluted sites That is to say, experiment for emulsification, test for oil spreading, test for drop collapse, and measure for hemolysis. The capability to produce biosurfactants was seen in 22 different isolates from polluted sites B1, B2, and B3. Through different biochemical tests and Gram staining, it was identified that isolated bacterial strains are Pseudomonas spp and that is Pseudomonas aeruginosa. The procedure used as characterizing biosurfactants was the TLC plate’s procedure, by using TLC plates process yellow dots emerged after spraying on silica gel plates with an throne and ninhydrin reagents. These yellow spots confirmed the presence and production of rhamnolipid in the biosurfactant. Hence, it was concluded that identified strains in the study can be helpful in the heavy metals, pesticides, and hydrocarbons bio-degradation and bioremediation. These may also be used as biological control agents to protect plants from various pathogens, resulting in improved crop yields.\nIntroduction\nBiosurfactants are natural substances produced by several bacterial and fungal organisms that are amphiphilic and are extracellular (a part of the cell membrane) (Chen et al., 2007; Ghayyomiet al., 2012). Main purpose of the bio-surfactantsgeneration or production is a consequence of financial availability (Van Dyke et al., 1993 It is reported that almost 50 percent of the world's surfactants are used because of the need for cleaning agents as well as the rate of growth grows every day (Deleu and Paquot, 2004). Appropriate use of bio-surfactants will control environmental emissions what these are the most dangerous, constantly rising gradually and disrupting the routine maintenance of life every day. Awareness campaign initiatives have been introduced and also increase for environmental laws, various innovative approaches need to be implemented and even the issue of pollution focused entirely. Developing appropriate advanced technologies to help clear up chemicals and toxins from the ecosystem, like hydrocarbons (both inorganic and organic). Studies on biosurfactants are being launched by scholars and researchers with significant health issues like adverse environmental effects, air contamination, environmental change, and waste management (Makkar and Cameotra, 2002 Biosurfactants contribute to expanded demand for such microbial products as alternatives to chemical surfactants (Benatet al., 2000). Microbes seem to have the capability to degrade contaminants, but their biodegradation is limited leading to hydrophobicity, low solubility in water, and inadequate bioavailability, of such pollutants (Patil, et al., 2012). GhayyomiJazeh, Mishraet. al (2001) those bacteria that produce biosurfactants were isolated from the site of petroleum spills and afterward, 160 strains and as well as 59 strains were able to produce biosurfactants have shown better performance in a test for hemolysis of blood, and 45 strains with positive findings within oil spread experiment were applied in the laboratory to isolate and segregate the media cultured Banat process (Rahman et al., 2002) These were observed and researched that biosurfactants of Pseudomonas aeruginosa spp are most likely to disrupt the bonding of hydrocarbons like nonadecane, octa, Hexa, and hepta, in marine Water contaminated  with oil spills up To approximately 47%, 53%, 73% and 60%(Abrar et al., 2020). Current study concluded that the isolated strain having the ability to degrade hydrocarbon as well as the ability to degrade the heavy metal. The strain also can protect the plant from various diseases. The present research found that the isolated strain is capable of degrading hydrocarbon while also being capable of degrading the heavy metal.  As well as the strain does have the capability to defend plants from different diseases.\nMaterial And Methods\nArea of Study\nThe investigation was conducted at HazaraUniversity(HU)\n \nMicrobiology Laboratory, MansehraPakistan.\nAssemblage of Samples\nThehomestay area of the city Mansehra Pakistan which is named as a township, where oil spills arose, oil spills soil samples were obtained as well as sampling from various Mansehra automobile workshops were also done. Sterilized bags of polythene were being used to collect samples of the soil, after thatthe sample was taken towards the Hazara University (HU) Mansehra Microbiology Laboratory to examine and extract bacterial strains that could develop biosurfactants. The soil temperature at the time of sample selection was around 30 ° C. The pH was also verified by Galvano science companies at the time of selection by pH meter, and the pH being reported was 7.\n \nPreparation of Media\n15 x 100 mm Petri dishes were being used to prepare the media. Agar plates were thoroughly cleaned with water from the tap and then carefully covered in aluminum foil following cleaning then placed within autoclave at 121°C for about 15 min at 15 psi for sterilization. The nutrient agar which contains 0.5% NaCl, 0.3% beef extract, 0.5% peptone, and 1.5% agar, in 500 ml of distilled water, 14 g of the nutrient agar media (Merck) were dissolved. The nutrient level used mainly for the production of non-fastidious species.  Nutrient agar is widely known as it's capable of growing a variety of bacteria types and provides nutrients required for the growth of bacteria.  Upon sufficient dissolution of such nutrient agar in distilled water, these were then sterilized by autoclaving for 15 min at 15 psi in the autoclave and held at 121 °C Upon autoclaving, pouring of the media was done in laminar flow hood, and then packed and placed for yet more use in a fridge at 4°C. 2.4 Preparation of serial dilution\nThe bacteria are isolated using the serial dilution process. During this process, 10 test tubes were taken and distilled water (9ml) was added in each tube. After that tubes were put for 15 minutes in the autoclave machine at 121°C. After that 1gm of a crude oil sample from the soil was added in a test tube containing distilled water. Further, 1 ml of the solution was taken from the first test tube and poured to the adjoining tubes for the preparation dilution as under . Afterward, 10μl of the solution was pipetted from both the dilution of and shifted for spread culture techniques, then incubated the plates at 37°C for 48hrs.\nBiosurfactants extraction\nFirstly, in nutrient broth solution theculture of bacteria was added and inoculated with oil, the bacterial colony was then incubated at the temperature of 25°C in a shaking incubator just for 7 days. Incubation after seven days of trembling. Thebacterial Crop was then taken and centrifuged at 5000rpm at temperature 4°C for 20minutes. Following centrifugation, the supernatant was collected and then mixed in the equivalent amount in Methanol: Chloroform. White sediment was then retained and collected for further use\n.\nBacterial Colonies Isolation\n1 g of the soil polluted with oil was diluted serially up to 106 dilutions.10 μl of 104 and 106 dilutions for spread culture were transferred to the MSM agar plates and nutrient agar. The plates were then incubated at 37°C for 48hrs. Twenty-two morphologically separate colonies were separated for further specific examination just after the incubation and processed by using the technique of streak plate.\n \nScreening of Isolates’ Biosurfactants Behavior\nTo check the activity of biosurfactants produced by the bacterial species the following methods of screening were done.\n \nHemolytic Activity of Biosurfactants for Erythrocytes\nBlood agar containing 5% of blood was prepared as after the fresh isolates were added and inoculated on blood agar plates, then the plates were taken and placed in the incubator at temperature 37°C for 48hrs (Rashediet al., 2005). Thereafter the observation of clear zone in the colonies indicated the existence of bacterial species that produce biosurfactants. This experiment was undertaken to control the ability of isolated bacteria to induce blood agar hemolysis. Three forms of hemolysis usually involve; alpha, beta, and hemolysis of the gamma. The agar underneath the species is dark greenish, then it is Alpha, the yellowish color produced in beta hemolysis and gamma hemolysis does not affect the bacterial sppwhichadded on the plates (Anandaraj and Thivakaran, 2010).\n \nBio-surfactant identification with process of CTAB\nMSM (Mineral salt agar medium) with (2%) of glucose serving both as carbon source, (0.5 mg / ml) acetyl-tri-methyl-ammonium-bromide (CTAB), and methylene blue (MB: 0.2 mg/ml) are used to detect anionic bio-surfactants (Satpute et al., 2008). For this method, thirty microliters (30μl) of cell-free supernatant were added to each of the wells of the methylene blue agar plate that comprises of borer (4 mm in diameter). after that, the incubation of the plates was done for 48-72 hrs at 37°C. Just after incubation in each of the wells, a dark blue halo zone was being used to show the successful anionic bio-surfactant production.\n \n \n \nTable 1: Composition of MSM Media\n \n\n\n\n\nS. No\n\n\nIngredients\n\n\nAmount (gm/L)\n\n\n\n\nI\n\n\nPotassium dihydrogen phosphate (KH2PO4)\n\n \n\n\n\nII\n\n\nMagnesium Sulfate (MgSO4)\n\n \n\n\n\nIII\n\n\nIron Sulfate (FeSO4)\n\n \n\n\n\nIV\n\n\nSodium Nitrate (NaNO3)\n\n \n\n\n\nV\n\n\nCalcium Chloride (","PeriodicalId":17507,"journal":{"name":"Journal of Toxicology and Environmental Health Sciences","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Isolation And Characterization Of Biosurfactant Producing Bacteria From Different Environmental Soil Samples\",\"authors\":\"Abrar Hussain Mian\",\"doi\":\"10.55124/jtes.v1i1.133\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Biosurfactants are natural substances produced by several bacterial and fungal organisms that are amphiphilic and are extracellular (a part of the cell membrane). Biosurfactants can reduce the stress between solids and liquids on the surface and at the end. Biosurfactants have several properties, i.e. they are stable, less harmful, as well as readily degradable, and extremely eco-friendly. Biosurfactants also have a wide range of industrial uses because they are a versatile category of chemical substances. The principal justification for conducting such research was the isolation of possible biosurfactants containing bacteria. Sampling was performed for the isolation of bacteria producing biosurfactants from different oil-polluted sites That is to say, experiment for emulsification, test for oil spreading, test for drop collapse, and measure for hemolysis. The capability to produce biosurfactants was seen in 22 different isolates from polluted sites B1, B2, and B3. Through different biochemical tests and Gram staining, it was identified that isolated bacterial strains are Pseudomonas spp and that is Pseudomonas aeruginosa. The procedure used as characterizing biosurfactants was the TLC plate’s procedure, by using TLC plates process yellow dots emerged after spraying on silica gel plates with an throne and ninhydrin reagents. These yellow spots confirmed the presence and production of rhamnolipid in the biosurfactant. Hence, it was concluded that identified strains in the study can be helpful in the heavy metals, pesticides, and hydrocarbons bio-degradation and bioremediation. These may also be used as biological control agents to protect plants from various pathogens, resulting in improved crop yields.\\nIntroduction\\nBiosurfactants are natural substances produced by several bacterial and fungal organisms that are amphiphilic and are extracellular (a part of the cell membrane) (Chen et al., 2007; Ghayyomiet al., 2012). Main purpose of the bio-surfactantsgeneration or production is a consequence of financial availability (Van Dyke et al., 1993 It is reported that almost 50 percent of the world's surfactants are used because of the need for cleaning agents as well as the rate of growth grows every day (Deleu and Paquot, 2004). Appropriate use of bio-surfactants will control environmental emissions what these are the most dangerous, constantly rising gradually and disrupting the routine maintenance of life every day. Awareness campaign initiatives have been introduced and also increase for environmental laws, various innovative approaches need to be implemented and even the issue of pollution focused entirely. Developing appropriate advanced technologies to help clear up chemicals and toxins from the ecosystem, like hydrocarbons (both inorganic and organic). Studies on biosurfactants are being launched by scholars and researchers with significant health issues like adverse environmental effects, air contamination, environmental change, and waste management (Makkar and Cameotra, 2002 Biosurfactants contribute to expanded demand for such microbial products as alternatives to chemical surfactants (Benatet al., 2000). Microbes seem to have the capability to degrade contaminants, but their biodegradation is limited leading to hydrophobicity, low solubility in water, and inadequate bioavailability, of such pollutants (Patil, et al., 2012). GhayyomiJazeh, Mishraet. al (2001) those bacteria that produce biosurfactants were isolated from the site of petroleum spills and afterward, 160 strains and as well as 59 strains were able to produce biosurfactants have shown better performance in a test for hemolysis of blood, and 45 strains with positive findings within oil spread experiment were applied in the laboratory to isolate and segregate the media cultured Banat process (Rahman et al., 2002) These were observed and researched that biosurfactants of Pseudomonas aeruginosa spp are most likely to disrupt the bonding of hydrocarbons like nonadecane, octa, Hexa, and hepta, in marine Water contaminated  with oil spills up To approximately 47%, 53%, 73% and 60%(Abrar et al., 2020). Current study concluded that the isolated strain having the ability to degrade hydrocarbon as well as the ability to degrade the heavy metal. The strain also can protect the plant from various diseases. The present research found that the isolated strain is capable of degrading hydrocarbon while also being capable of degrading the heavy metal.  As well as the strain does have the capability to defend plants from different diseases.\\nMaterial And Methods\\nArea of Study\\nThe investigation was conducted at HazaraUniversity(HU)\\n \\nMicrobiology Laboratory, MansehraPakistan.\\nAssemblage of Samples\\nThehomestay area of the city Mansehra Pakistan which is named as a township, where oil spills arose, oil spills soil samples were obtained as well as sampling from various Mansehra automobile workshops were also done. Sterilized bags of polythene were being used to collect samples of the soil, after thatthe sample was taken towards the Hazara University (HU) Mansehra Microbiology Laboratory to examine and extract bacterial strains that could develop biosurfactants. The soil temperature at the time of sample selection was around 30 ° C. The pH was also verified by Galvano science companies at the time of selection by pH meter, and the pH being reported was 7.\\n \\nPreparation of Media\\n15 x 100 mm Petri dishes were being used to prepare the media. Agar plates were thoroughly cleaned with water from the tap and then carefully covered in aluminum foil following cleaning then placed within autoclave at 121°C for about 15 min at 15 psi for sterilization. The nutrient agar which contains 0.5% NaCl, 0.3% beef extract, 0.5% peptone, and 1.5% agar, in 500 ml of distilled water, 14 g of the nutrient agar media (Merck) were dissolved. The nutrient level used mainly for the production of non-fastidious species.  Nutrient agar is widely known as it's capable of growing a variety of bacteria types and provides nutrients required for the growth of bacteria.  Upon sufficient dissolution of such nutrient agar in distilled water, these were then sterilized by autoclaving for 15 min at 15 psi in the autoclave and held at 121 °C Upon autoclaving, pouring of the media was done in laminar flow hood, and then packed and placed for yet more use in a fridge at 4°C. 2.4 Preparation of serial dilution\\nThe bacteria are isolated using the serial dilution process. During this process, 10 test tubes were taken and distilled water (9ml) was added in each tube. After that tubes were put for 15 minutes in the autoclave machine at 121°C. After that 1gm of a crude oil sample from the soil was added in a test tube containing distilled water. Further, 1 ml of the solution was taken from the first test tube and poured to the adjoining tubes for the preparation dilution as under . Afterward, 10μl of the solution was pipetted from both the dilution of and shifted for spread culture techniques, then incubated the plates at 37°C for 48hrs.\\nBiosurfactants extraction\\nFirstly, in nutrient broth solution theculture of bacteria was added and inoculated with oil, the bacterial colony was then incubated at the temperature of 25°C in a shaking incubator just for 7 days. Incubation after seven days of trembling. Thebacterial Crop was then taken and centrifuged at 5000rpm at temperature 4°C for 20minutes. Following centrifugation, the supernatant was collected and then mixed in the equivalent amount in Methanol: Chloroform. White sediment was then retained and collected for further use\\n.\\nBacterial Colonies Isolation\\n1 g of the soil polluted with oil was diluted serially up to 106 dilutions.10 μl of 104 and 106 dilutions for spread culture were transferred to the MSM agar plates and nutrient agar. The plates were then incubated at 37°C for 48hrs. Twenty-two morphologically separate colonies were separated for further specific examination just after the incubation and processed by using the technique of streak plate.\\n \\nScreening of Isolates’ Biosurfactants Behavior\\nTo check the activity of biosurfactants produced by the bacterial species the following methods of screening were done.\\n \\nHemolytic Activity of Biosurfactants for Erythrocytes\\nBlood agar containing 5% of blood was prepared as after the fresh isolates were added and inoculated on blood agar plates, then the plates were taken and placed in the incubator at temperature 37°C for 48hrs (Rashediet al., 2005). Thereafter the observation of clear zone in the colonies indicated the existence of bacterial species that produce biosurfactants. This experiment was undertaken to control the ability of isolated bacteria to induce blood agar hemolysis. Three forms of hemolysis usually involve; alpha, beta, and hemolysis of the gamma. The agar underneath the species is dark greenish, then it is Alpha, the yellowish color produced in beta hemolysis and gamma hemolysis does not affect the bacterial sppwhichadded on the plates (Anandaraj and Thivakaran, 2010).\\n \\nBio-surfactant identification with process of CTAB\\nMSM (Mineral salt agar medium) with (2%) of glucose serving both as carbon source, (0.5 mg / ml) acetyl-tri-methyl-ammonium-bromide (CTAB), and methylene blue (MB: 0.2 mg/ml) are used to detect anionic bio-surfactants (Satpute et al., 2008). For this method, thirty microliters (30μl) of cell-free supernatant were added to each of the wells of the methylene blue agar plate that comprises of borer (4 mm in diameter). after that, the incubation of the plates was done for 48-72 hrs at 37°C. Just after incubation in each of the wells, a dark blue halo zone was being used to show the successful anionic bio-surfactant production.\\n \\n \\n \\nTable 1: Composition of MSM Media\\n \\n\\n\\n\\n\\nS. No\\n\\n\\nIngredients\\n\\n\\nAmount (gm/L)\\n\\n\\n\\n\\nI\\n\\n\\nPotassium dihydrogen phosphate (KH2PO4)\\n\\n \\n\\n\\n\\nII\\n\\n\\nMagnesium Sulfate (MgSO4)\\n\\n \\n\\n\\n\\nIII\\n\\n\\nIron Sulfate (FeSO4)\\n\\n \\n\\n\\n\\nIV\\n\\n\\nSodium Nitrate (NaNO3)\\n\\n \\n\\n\\n\\nV\\n\\n\\nCalcium Chloride (\",\"PeriodicalId\":17507,\"journal\":{\"name\":\"Journal of Toxicology and Environmental Health Sciences\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Toxicology and Environmental Health Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.55124/jtes.v1i1.133\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Toxicology and Environmental Health Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.55124/jtes.v1i1.133","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

生物表面活性剂是由几种细菌和真菌生物产生的天然物质,它们是两亲性的,是细胞外的(细胞膜的一部分)。生物表面活性剂可以减少固体和液体在表面和末端之间的压力。生物表面活性剂具有几个特性,即它们稳定,危害小,易于降解,并且非常环保。生物表面活性剂也有广泛的工业用途,因为它们是一种多用途的化学物质。进行这种研究的主要理由是分离可能含有细菌的生物表面活性剂。从不同的油污染部位取样分离产生生物表面活性剂的细菌,即进行乳化试验、油扩散试验、滴塌试验和溶血试验。从污染点B1、B2和B3的22个不同分离株中观察到产生生物表面活性剂的能力。通过不同的生化试验和革兰氏染色,鉴定分离的菌株为假单胞菌,为铜绿假单胞菌。表征生物表面活性剂的程序为薄层色谱板的程序,采用薄层色谱板工艺,用王座和茚三酮试剂在硅胶板上喷涂后出现黄点。这些黄色斑点证实了鼠李糖脂在生物表面活性剂中的存在和产生。因此,本研究鉴定的菌株在重金属、农药和碳氢化合物的生物降解和生物修复中具有一定的应用价值。它们也可用作生物防治剂,保护植物免受各种病原体的侵害,从而提高作物产量。生物表面活性剂是由几种细菌和真菌生物产生的天然物质,它们是两亲性的,是细胞外(细胞膜的一部分)(Chen等人,2007;Ghayyomiet al., 2012)。生物表面活性剂产生或生产的主要目的是财政可用性的结果(Van Dyke等人,1993年。据报道,世界上几乎50%的表面活性剂的使用是因为对清洁剂的需求以及每天增长的速度(Deleu和Paquot, 2004年)。适当使用生物表面活性剂将控制环境中最危险的排放物,这些排放物不断上升,逐渐扰乱日常生活的维护。提高认识运动的倡议已经出台,环境法也在增加,需要实施各种创新方法,甚至完全关注污染问题。开发适当的先进技术,帮助清除生态系统中的化学物质和毒素,如碳氢化合物(无机和有机)。研究诸如不利环境影响、空气污染、环境变化和废物管理等重大健康问题的学者和研究人员正在开展关于生物表面活性剂的研究(Makkar和camotra, 2002年)。生物表面活性剂有助于扩大对作为化学表面活性剂替代品的微生物产品的需求(Benatet等人,2000年)。微生物似乎具有降解污染物的能力,但它们的生物降解有限,导致这些污染物的疏水性、在水中的溶解度低、生物利用度不足(Patil, et al., 2012)。GhayyomiJazeh Mishraet。al(2001)从石油泄漏现场分离出产生生物表面活性剂的细菌,随后,160株菌株和59株能够产生生物表面活性剂的菌株在血液溶血测试中表现出较好的性能,在油扩散实验中发现阳性的45株菌株在实验室中分离和分离培养基培养的Banat工艺(Rahman等)。这些观察和研究表明,铜绿假单胞菌的生物表面活性剂最有可能破坏被石油泄漏污染的海水中十一烷、八烷、六烷和七烷等碳氢化合物的结合,其比例约为47%、53%、73%和60%(Abrar等人,2020)。目前的研究表明,分离菌株具有降解碳氢化合物和降解重金属的能力。该菌株还可以保护植物免受各种疾病的侵害。本研究发现,分离出的菌株既能降解烃类,又能降解重金属。此外,这种菌株确实有能力保护植物免受不同疾病的侵害。材料与方法研究区域在巴基斯坦哈扎拉大学微生物实验室进行。巴基斯坦Mansehra市的民寄宿区被命名为一个乡镇,那里发生了石油泄漏,获得了石油泄漏的土壤样本,并从Mansehra的各个汽车车间进行了采样。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Isolation And Characterization Of Biosurfactant Producing Bacteria From Different Environmental Soil Samples
Biosurfactants are natural substances produced by several bacterial and fungal organisms that are amphiphilic and are extracellular (a part of the cell membrane). Biosurfactants can reduce the stress between solids and liquids on the surface and at the end. Biosurfactants have several properties, i.e. they are stable, less harmful, as well as readily degradable, and extremely eco-friendly. Biosurfactants also have a wide range of industrial uses because they are a versatile category of chemical substances. The principal justification for conducting such research was the isolation of possible biosurfactants containing bacteria. Sampling was performed for the isolation of bacteria producing biosurfactants from different oil-polluted sites That is to say, experiment for emulsification, test for oil spreading, test for drop collapse, and measure for hemolysis. The capability to produce biosurfactants was seen in 22 different isolates from polluted sites B1, B2, and B3. Through different biochemical tests and Gram staining, it was identified that isolated bacterial strains are Pseudomonas spp and that is Pseudomonas aeruginosa. The procedure used as characterizing biosurfactants was the TLC plate’s procedure, by using TLC plates process yellow dots emerged after spraying on silica gel plates with an throne and ninhydrin reagents. These yellow spots confirmed the presence and production of rhamnolipid in the biosurfactant. Hence, it was concluded that identified strains in the study can be helpful in the heavy metals, pesticides, and hydrocarbons bio-degradation and bioremediation. These may also be used as biological control agents to protect plants from various pathogens, resulting in improved crop yields. Introduction Biosurfactants are natural substances produced by several bacterial and fungal organisms that are amphiphilic and are extracellular (a part of the cell membrane) (Chen et al., 2007; Ghayyomiet al., 2012). Main purpose of the bio-surfactantsgeneration or production is a consequence of financial availability (Van Dyke et al., 1993 It is reported that almost 50 percent of the world's surfactants are used because of the need for cleaning agents as well as the rate of growth grows every day (Deleu and Paquot, 2004). Appropriate use of bio-surfactants will control environmental emissions what these are the most dangerous, constantly rising gradually and disrupting the routine maintenance of life every day. Awareness campaign initiatives have been introduced and also increase for environmental laws, various innovative approaches need to be implemented and even the issue of pollution focused entirely. Developing appropriate advanced technologies to help clear up chemicals and toxins from the ecosystem, like hydrocarbons (both inorganic and organic). Studies on biosurfactants are being launched by scholars and researchers with significant health issues like adverse environmental effects, air contamination, environmental change, and waste management (Makkar and Cameotra, 2002 Biosurfactants contribute to expanded demand for such microbial products as alternatives to chemical surfactants (Benatet al., 2000). Microbes seem to have the capability to degrade contaminants, but their biodegradation is limited leading to hydrophobicity, low solubility in water, and inadequate bioavailability, of such pollutants (Patil, et al., 2012). GhayyomiJazeh, Mishraet. al (2001) those bacteria that produce biosurfactants were isolated from the site of petroleum spills and afterward, 160 strains and as well as 59 strains were able to produce biosurfactants have shown better performance in a test for hemolysis of blood, and 45 strains with positive findings within oil spread experiment were applied in the laboratory to isolate and segregate the media cultured Banat process (Rahman et al., 2002) These were observed and researched that biosurfactants of Pseudomonas aeruginosa spp are most likely to disrupt the bonding of hydrocarbons like nonadecane, octa, Hexa, and hepta, in marine Water contaminated  with oil spills up To approximately 47%, 53%, 73% and 60%(Abrar et al., 2020). Current study concluded that the isolated strain having the ability to degrade hydrocarbon as well as the ability to degrade the heavy metal. The strain also can protect the plant from various diseases. The present research found that the isolated strain is capable of degrading hydrocarbon while also being capable of degrading the heavy metal.  As well as the strain does have the capability to defend plants from different diseases. Material And Methods Area of Study The investigation was conducted at HazaraUniversity(HU)   Microbiology Laboratory, MansehraPakistan. Assemblage of Samples Thehomestay area of the city Mansehra Pakistan which is named as a township, where oil spills arose, oil spills soil samples were obtained as well as sampling from various Mansehra automobile workshops were also done. Sterilized bags of polythene were being used to collect samples of the soil, after thatthe sample was taken towards the Hazara University (HU) Mansehra Microbiology Laboratory to examine and extract bacterial strains that could develop biosurfactants. The soil temperature at the time of sample selection was around 30 ° C. The pH was also verified by Galvano science companies at the time of selection by pH meter, and the pH being reported was 7.   Preparation of Media 15 x 100 mm Petri dishes were being used to prepare the media. Agar plates were thoroughly cleaned with water from the tap and then carefully covered in aluminum foil following cleaning then placed within autoclave at 121°C for about 15 min at 15 psi for sterilization. The nutrient agar which contains 0.5% NaCl, 0.3% beef extract, 0.5% peptone, and 1.5% agar, in 500 ml of distilled water, 14 g of the nutrient agar media (Merck) were dissolved. The nutrient level used mainly for the production of non-fastidious species.  Nutrient agar is widely known as it's capable of growing a variety of bacteria types and provides nutrients required for the growth of bacteria.  Upon sufficient dissolution of such nutrient agar in distilled water, these were then sterilized by autoclaving for 15 min at 15 psi in the autoclave and held at 121 °C Upon autoclaving, pouring of the media was done in laminar flow hood, and then packed and placed for yet more use in a fridge at 4°C. 2.4 Preparation of serial dilution The bacteria are isolated using the serial dilution process. During this process, 10 test tubes were taken and distilled water (9ml) was added in each tube. After that tubes were put for 15 minutes in the autoclave machine at 121°C. After that 1gm of a crude oil sample from the soil was added in a test tube containing distilled water. Further, 1 ml of the solution was taken from the first test tube and poured to the adjoining tubes for the preparation dilution as under . Afterward, 10μl of the solution was pipetted from both the dilution of and shifted for spread culture techniques, then incubated the plates at 37°C for 48hrs. Biosurfactants extraction Firstly, in nutrient broth solution theculture of bacteria was added and inoculated with oil, the bacterial colony was then incubated at the temperature of 25°C in a shaking incubator just for 7 days. Incubation after seven days of trembling. Thebacterial Crop was then taken and centrifuged at 5000rpm at temperature 4°C for 20minutes. Following centrifugation, the supernatant was collected and then mixed in the equivalent amount in Methanol: Chloroform. White sediment was then retained and collected for further use . Bacterial Colonies Isolation 1 g of the soil polluted with oil was diluted serially up to 106 dilutions.10 μl of 104 and 106 dilutions for spread culture were transferred to the MSM agar plates and nutrient agar. The plates were then incubated at 37°C for 48hrs. Twenty-two morphologically separate colonies were separated for further specific examination just after the incubation and processed by using the technique of streak plate.   Screening of Isolates’ Biosurfactants Behavior To check the activity of biosurfactants produced by the bacterial species the following methods of screening were done.   Hemolytic Activity of Biosurfactants for Erythrocytes Blood agar containing 5% of blood was prepared as after the fresh isolates were added and inoculated on blood agar plates, then the plates were taken and placed in the incubator at temperature 37°C for 48hrs (Rashediet al., 2005). Thereafter the observation of clear zone in the colonies indicated the existence of bacterial species that produce biosurfactants. This experiment was undertaken to control the ability of isolated bacteria to induce blood agar hemolysis. Three forms of hemolysis usually involve; alpha, beta, and hemolysis of the gamma. The agar underneath the species is dark greenish, then it is Alpha, the yellowish color produced in beta hemolysis and gamma hemolysis does not affect the bacterial sppwhichadded on the plates (Anandaraj and Thivakaran, 2010).   Bio-surfactant identification with process of CTAB MSM (Mineral salt agar medium) with (2%) of glucose serving both as carbon source, (0.5 mg / ml) acetyl-tri-methyl-ammonium-bromide (CTAB), and methylene blue (MB: 0.2 mg/ml) are used to detect anionic bio-surfactants (Satpute et al., 2008). For this method, thirty microliters (30μl) of cell-free supernatant were added to each of the wells of the methylene blue agar plate that comprises of borer (4 mm in diameter). after that, the incubation of the plates was done for 48-72 hrs at 37°C. Just after incubation in each of the wells, a dark blue halo zone was being used to show the successful anionic bio-surfactant production.       Table 1: Composition of MSM Media   S. No Ingredients Amount (gm/L) I Potassium dihydrogen phosphate (KH2PO4)   II Magnesium Sulfate (MgSO4)   III Iron Sulfate (FeSO4)   IV Sodium Nitrate (NaNO3)   V Calcium Chloride (
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
People perceptions about usage of polythene and its impact on environment at Ruwanwella DS division in Sri Lanka Determination of pesticide residue levels in some common food crops: The suitability for human consumption Comparison of nicotine contents in local and imported cigarettes sold in Abidjan markets in Cte dIvoire: Lessons for regulation Acute and subacute toxicity studies of hydroethanolic extract of Baillonella toxisperma Pierre fruit pulp Assessment of Effects of Motivation on Production Operatives in The Nigerian Construction Industry
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1