亚稳复合合金的去孪晶/孪晶生长诱导相变

IF 3.3 3区 物理与天体物理 Q2 PHYSICS, CONDENSED MATTER Superlattices and Microstructures Pub Date : 2022-01-01 DOI:10.20517/microstructures.2022.14
Wenjun Lu, F. An, C. Liebscher
{"title":"亚稳复合合金的去孪晶/孪晶生长诱导相变","authors":"Wenjun Lu, F. An, C. Liebscher","doi":"10.20517/microstructures.2022.14","DOIUrl":null,"url":null,"abstract":"Extensive experiments have shown that the transformation from the face-centered cubic to hexagonal close-packed ε phase usually occurs around coherent Σ3 boundaries. However, in this letter, we reveal a different transformation mechanism in a metastable dual-phase compositionally complex alloy via a systematic high-resolution scanning transmission electron microscopy analysis. The face-centered cubic γ matrix can be transformed to the hexagonal close-packed ɛ phase (as small as one unit) around an incoherent Σ3 boundary (~30 nm), i.e., the facet of the coherent Σ3 boundary. This transformation is assisted by the detwinning/twin growth of a coherent Σ3 boundary during annealing treatment (900 °C for 60 min).","PeriodicalId":22044,"journal":{"name":"Superlattices and Microstructures","volume":"42 1","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Detwinning/twin growth-induced phase transformation in a metastable compositionally complex alloy\",\"authors\":\"Wenjun Lu, F. An, C. Liebscher\",\"doi\":\"10.20517/microstructures.2022.14\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Extensive experiments have shown that the transformation from the face-centered cubic to hexagonal close-packed ε phase usually occurs around coherent Σ3 boundaries. However, in this letter, we reveal a different transformation mechanism in a metastable dual-phase compositionally complex alloy via a systematic high-resolution scanning transmission electron microscopy analysis. The face-centered cubic γ matrix can be transformed to the hexagonal close-packed ɛ phase (as small as one unit) around an incoherent Σ3 boundary (~30 nm), i.e., the facet of the coherent Σ3 boundary. This transformation is assisted by the detwinning/twin growth of a coherent Σ3 boundary during annealing treatment (900 °C for 60 min).\",\"PeriodicalId\":22044,\"journal\":{\"name\":\"Superlattices and Microstructures\",\"volume\":\"42 1\",\"pages\":\"\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Superlattices and Microstructures\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.20517/microstructures.2022.14\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, CONDENSED MATTER\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Superlattices and Microstructures","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.20517/microstructures.2022.14","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 1

摘要

大量的实验表明,从面心立方到六边形密集ε相的转变通常发生在相干Σ3边界附近。然而,在这篇文章中,我们通过系统的高分辨率扫描透射电镜分析揭示了亚稳双相成分复杂合金的不同转变机制。面心立方γ矩阵可以在非相干Σ3边界(~30 nm)周围(即相干Σ3边界的面)转化为六角形密排相(小至一个单位)。在退火处理(900°C 60分钟)期间,相干Σ3边界的脱孪/孪晶生长辅助了这种转变。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Detwinning/twin growth-induced phase transformation in a metastable compositionally complex alloy
Extensive experiments have shown that the transformation from the face-centered cubic to hexagonal close-packed ε phase usually occurs around coherent Σ3 boundaries. However, in this letter, we reveal a different transformation mechanism in a metastable dual-phase compositionally complex alloy via a systematic high-resolution scanning transmission electron microscopy analysis. The face-centered cubic γ matrix can be transformed to the hexagonal close-packed ɛ phase (as small as one unit) around an incoherent Σ3 boundary (~30 nm), i.e., the facet of the coherent Σ3 boundary. This transformation is assisted by the detwinning/twin growth of a coherent Σ3 boundary during annealing treatment (900 °C for 60 min).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Superlattices and Microstructures
Superlattices and Microstructures 物理-物理:凝聚态物理
CiteScore
6.10
自引率
3.20%
发文量
35
审稿时长
2.8 months
期刊介绍: Micro and Nanostructures is a journal disseminating the science and technology of micro-structures and nano-structures in materials and their devices, including individual and collective use of semiconductors, metals and insulators for the exploitation of their unique properties. The journal hosts papers dealing with fundamental and applied experimental research as well as theoretical studies. Fields of interest, including emerging ones, cover: • Novel micro and nanostructures • Nanomaterials (nanowires, nanodots, 2D materials ) and devices • Synthetic heterostructures • Plasmonics • Micro and nano-defects in materials (semiconductor, metal and insulators) • Surfaces and interfaces of thin films In addition to Research Papers, the journal aims at publishing Topical Reviews providing insights into rapidly evolving or more mature fields. Written by leading researchers in their respective fields, those articles are commissioned by the Editorial Board. Formerly known as Superlattices and Microstructures, with a 2021 IF of 3.22 and 2021 CiteScore of 5.4
期刊最新文献
Temperature dependence of dielectric nonlinearity of BaTiO3 ceramics Influence of hydrogel and porous scaffold on the magnetic thermal property and anticancer effect of Fe3O4 nanoparticles Magnetic structures and correlated physical properties in antiperovskites Cryogenic atom probe tomography and its applications: a review Scanning transmission electron microscopy for advanced characterization of ferroic materials
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1