V. Sadykov, V. S. Muzykantov, N. Yeremeev, V. Pelipenko, E. Sadovskaya, A. Bobin, Yulia Fedorova, D. Amanbaeva, A. Smirnova
{"title":"固体氧化物燃料电池阴极:化学成分和形态的重要性","authors":"V. Sadykov, V. S. Muzykantov, N. Yeremeev, V. Pelipenko, E. Sadovskaya, A. Bobin, Yulia Fedorova, D. Amanbaeva, A. Smirnova","doi":"10.1515/cse-2015-0004","DOIUrl":null,"url":null,"abstract":"Abstract The main aspects of the cathode materials morphology for Intermediate Temperature Solid Oxide Fuel Cells (IT SOFC) are considered in this paper. The approaches for estimation of their basic properties, e.g. oxygen mobility and surface reactivity, are described and the results of different techniques (e.g. weight and conductivity relaxation, oxygen isotope exchange) application for studies of powders and dense ceramic materials are compared. The Ruddlesden-Popper type phases (e.g. Pr2NiO4) provide enhanced oxygen mobility due to cooperative mechanism of oxygen interstitial migration. For perovskites, the oxygen mobility is increased by doping, which generates oxygen vacancies or decreases metal-oxygen bond strength. Nonadditive increasing of the oxygen diffusion coefficients found that for perovskite-fluorite nanocomposites, it can be explained by the fast oxygen migration along perovskitefluorite interfaces. Functionally graded nanocomposite cathodes provide the highest power density, the lowest area specific polarization resistance, and the best stability to degradation caused by the surface layer carbonization/ hydroxylation, thus being the most promising for thin film IT SOFC design.","PeriodicalId":9642,"journal":{"name":"Catalysis for Sustainable Energy","volume":"4 1","pages":"57 - 70"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"Solid Oxide Fuel Cell Cathodes: Importance of Chemical Composition and Morphology\",\"authors\":\"V. Sadykov, V. S. Muzykantov, N. Yeremeev, V. Pelipenko, E. Sadovskaya, A. Bobin, Yulia Fedorova, D. Amanbaeva, A. Smirnova\",\"doi\":\"10.1515/cse-2015-0004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The main aspects of the cathode materials morphology for Intermediate Temperature Solid Oxide Fuel Cells (IT SOFC) are considered in this paper. The approaches for estimation of their basic properties, e.g. oxygen mobility and surface reactivity, are described and the results of different techniques (e.g. weight and conductivity relaxation, oxygen isotope exchange) application for studies of powders and dense ceramic materials are compared. The Ruddlesden-Popper type phases (e.g. Pr2NiO4) provide enhanced oxygen mobility due to cooperative mechanism of oxygen interstitial migration. For perovskites, the oxygen mobility is increased by doping, which generates oxygen vacancies or decreases metal-oxygen bond strength. Nonadditive increasing of the oxygen diffusion coefficients found that for perovskite-fluorite nanocomposites, it can be explained by the fast oxygen migration along perovskitefluorite interfaces. Functionally graded nanocomposite cathodes provide the highest power density, the lowest area specific polarization resistance, and the best stability to degradation caused by the surface layer carbonization/ hydroxylation, thus being the most promising for thin film IT SOFC design.\",\"PeriodicalId\":9642,\"journal\":{\"name\":\"Catalysis for Sustainable Energy\",\"volume\":\"4 1\",\"pages\":\"57 - 70\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-12-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Catalysis for Sustainable Energy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/cse-2015-0004\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Catalysis for Sustainable Energy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/cse-2015-0004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Solid Oxide Fuel Cell Cathodes: Importance of Chemical Composition and Morphology
Abstract The main aspects of the cathode materials morphology for Intermediate Temperature Solid Oxide Fuel Cells (IT SOFC) are considered in this paper. The approaches for estimation of their basic properties, e.g. oxygen mobility and surface reactivity, are described and the results of different techniques (e.g. weight and conductivity relaxation, oxygen isotope exchange) application for studies of powders and dense ceramic materials are compared. The Ruddlesden-Popper type phases (e.g. Pr2NiO4) provide enhanced oxygen mobility due to cooperative mechanism of oxygen interstitial migration. For perovskites, the oxygen mobility is increased by doping, which generates oxygen vacancies or decreases metal-oxygen bond strength. Nonadditive increasing of the oxygen diffusion coefficients found that for perovskite-fluorite nanocomposites, it can be explained by the fast oxygen migration along perovskitefluorite interfaces. Functionally graded nanocomposite cathodes provide the highest power density, the lowest area specific polarization resistance, and the best stability to degradation caused by the surface layer carbonization/ hydroxylation, thus being the most promising for thin film IT SOFC design.