{"title":"基于Zigbee标准的FPGA CRC块开发","authors":"R. Ahmad, O. Sidek, S. Mohd","doi":"10.1109/IMPACT.2009.5382117","DOIUrl":null,"url":null,"abstract":"CRC (Cyclic Redundanncy Check) block was developed on FPGA (Field Programmable Gate Array) in order to meet the needs for simple, low-power and low-cost wireless communication such as Zigbee. Zigbee operates primarily in the 2.4 GHz band, which makes the technology easily applicable and worldwide available. This paper gives a short overview of CRC block in the digital transmitter based on Zigbee Standard. CRC is the most preferred method of encoding because it provides very efficient protection against commonly occurring burst errors, and is easily implemented. The purpose of the research is to diversify the design methods by using the Verilog code entry through Xilinx ISE 8.2i. The Verilog code is used to characterize the CRC block behavior which is then simulated, synthesized and successfully implemented on Spartan3E XC3S500E FPGA. Here, the simulation and measurement results are also presented to verify the functionality of the CRC block. The data rate of CRC block is 250 kbps.","PeriodicalId":6410,"journal":{"name":"2009 4th International Microsystems, Packaging, Assembly and Circuits Technology Conference","volume":"4 1","pages":"282-285"},"PeriodicalIF":0.0000,"publicationDate":"2009-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Development of CRC block onn FPGA for Zigbee standard\",\"authors\":\"R. Ahmad, O. Sidek, S. Mohd\",\"doi\":\"10.1109/IMPACT.2009.5382117\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"CRC (Cyclic Redundanncy Check) block was developed on FPGA (Field Programmable Gate Array) in order to meet the needs for simple, low-power and low-cost wireless communication such as Zigbee. Zigbee operates primarily in the 2.4 GHz band, which makes the technology easily applicable and worldwide available. This paper gives a short overview of CRC block in the digital transmitter based on Zigbee Standard. CRC is the most preferred method of encoding because it provides very efficient protection against commonly occurring burst errors, and is easily implemented. The purpose of the research is to diversify the design methods by using the Verilog code entry through Xilinx ISE 8.2i. The Verilog code is used to characterize the CRC block behavior which is then simulated, synthesized and successfully implemented on Spartan3E XC3S500E FPGA. Here, the simulation and measurement results are also presented to verify the functionality of the CRC block. The data rate of CRC block is 250 kbps.\",\"PeriodicalId\":6410,\"journal\":{\"name\":\"2009 4th International Microsystems, Packaging, Assembly and Circuits Technology Conference\",\"volume\":\"4 1\",\"pages\":\"282-285\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 4th International Microsystems, Packaging, Assembly and Circuits Technology Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IMPACT.2009.5382117\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 4th International Microsystems, Packaging, Assembly and Circuits Technology Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IMPACT.2009.5382117","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
摘要
为了满足Zigbee等简单、低功耗、低成本的无线通信需求,在FPGA(现场可编程门阵列)上开发了CRC(循环冗余校验)块。Zigbee主要在2.4 GHz频段运行,这使得该技术易于应用并在全球范围内可用。本文简要介绍了基于Zigbee标准的数字发射机中的CRC分组。CRC是最受欢迎的编码方法,因为它对常见的突发错误提供了非常有效的保护,并且易于实现。该研究的目的是通过Xilinx ISE 8.2i使用Verilog代码条目来使设计方法多样化。Verilog代码用于描述CRC块行为,然后在Spartan3E XC3S500E FPGA上进行模拟,合成并成功实现。本文还给出了仿真和测量结果来验证CRC块的功能。CRC块的数据速率为250kbps。
Development of CRC block onn FPGA for Zigbee standard
CRC (Cyclic Redundanncy Check) block was developed on FPGA (Field Programmable Gate Array) in order to meet the needs for simple, low-power and low-cost wireless communication such as Zigbee. Zigbee operates primarily in the 2.4 GHz band, which makes the technology easily applicable and worldwide available. This paper gives a short overview of CRC block in the digital transmitter based on Zigbee Standard. CRC is the most preferred method of encoding because it provides very efficient protection against commonly occurring burst errors, and is easily implemented. The purpose of the research is to diversify the design methods by using the Verilog code entry through Xilinx ISE 8.2i. The Verilog code is used to characterize the CRC block behavior which is then simulated, synthesized and successfully implemented on Spartan3E XC3S500E FPGA. Here, the simulation and measurement results are also presented to verify the functionality of the CRC block. The data rate of CRC block is 250 kbps.