{"title":"采用金属辅助化学蚀刻的高向硅结构","authors":"N. Toan, M. Toda, T. Ono","doi":"10.1109/NANO.2016.7751348","DOIUrl":null,"url":null,"abstract":"This work reports on metal assisted chemical etching (MACE) for high aspect silicon structures. Ultra-high aspect trenches and pillars of 400 and 80, respectively, have been achieved by MACE. Additionally, a cantilever fabrication based on above pillars is demonstrated by using assembly technology. The pillars are assembled onto glass substrate and fixed by conductive glue. The fabricated cantilever shows a resonance frequency of 235 kHz and a quality factor of 800.","PeriodicalId":6646,"journal":{"name":"2016 IEEE 16th International Conference on Nanotechnology (IEEE-NANO)","volume":"1 1","pages":"720-723"},"PeriodicalIF":0.0000,"publicationDate":"2016-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High aspect silicon structures using metal assisted chemical etching\",\"authors\":\"N. Toan, M. Toda, T. Ono\",\"doi\":\"10.1109/NANO.2016.7751348\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work reports on metal assisted chemical etching (MACE) for high aspect silicon structures. Ultra-high aspect trenches and pillars of 400 and 80, respectively, have been achieved by MACE. Additionally, a cantilever fabrication based on above pillars is demonstrated by using assembly technology. The pillars are assembled onto glass substrate and fixed by conductive glue. The fabricated cantilever shows a resonance frequency of 235 kHz and a quality factor of 800.\",\"PeriodicalId\":6646,\"journal\":{\"name\":\"2016 IEEE 16th International Conference on Nanotechnology (IEEE-NANO)\",\"volume\":\"1 1\",\"pages\":\"720-723\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE 16th International Conference on Nanotechnology (IEEE-NANO)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NANO.2016.7751348\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE 16th International Conference on Nanotechnology (IEEE-NANO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NANO.2016.7751348","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
High aspect silicon structures using metal assisted chemical etching
This work reports on metal assisted chemical etching (MACE) for high aspect silicon structures. Ultra-high aspect trenches and pillars of 400 and 80, respectively, have been achieved by MACE. Additionally, a cantilever fabrication based on above pillars is demonstrated by using assembly technology. The pillars are assembled onto glass substrate and fixed by conductive glue. The fabricated cantilever shows a resonance frequency of 235 kHz and a quality factor of 800.