水轮发电机预见性维护设备

L.C. Ribeiro , E.L. Bonaldi , L.E.L. de Oliveira , L.E. Borges da Silva , C.P. Salomon , W.C. Santana , J.G. Borges da Silva , G. Lambert-Torres
{"title":"水轮发电机预见性维护设备","authors":"L.C. Ribeiro ,&nbsp;E.L. Bonaldi ,&nbsp;L.E.L. de Oliveira ,&nbsp;L.E. Borges da Silva ,&nbsp;C.P. Salomon ,&nbsp;W.C. Santana ,&nbsp;J.G. Borges da Silva ,&nbsp;G. Lambert-Torres","doi":"10.1016/j.aasri.2014.05.032","DOIUrl":null,"url":null,"abstract":"<div><p>This paper presents an equipment for predictive maintenance in large hydrogenerators. This equipment uses techniques of digital signal processing of the information contained in the electrical variables involved in the operation of the generator. Basically, the current and voltage signals of the generator are monitored and applied the techniques of electric signature analysis. The central idea is to unite the techniques of current signature analysis (CSA), voltage signature analysis (VSA) and Enhanced Park's Vector Approach (EPVA), to separate the spectra of signals and detect frequencies related to electrical and mechanical defects of generator-turbine set. This is possible because the generator is basically a device handling magnetic fields, so it's believable to infer that any operating conditions of all, somehow, influences the behavior of the magnetic field, reflecting noticeably in variations in signs of tensions and currents provided by its. The problem is to detect these variations, because some of them are under existing noise signs, and relate them to defects which they represent. This paper presents a real implementation in a hydrogenerator at Itapebi Power Plant, Brazil.</p></div>","PeriodicalId":100008,"journal":{"name":"AASRI Procedia","volume":"7 ","pages":"Pages 75-80"},"PeriodicalIF":0.0000,"publicationDate":"2014-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.aasri.2014.05.032","citationCount":"14","resultStr":"{\"title\":\"Equipment for Predictive Maintenance in Hydrogenerators\",\"authors\":\"L.C. Ribeiro ,&nbsp;E.L. Bonaldi ,&nbsp;L.E.L. de Oliveira ,&nbsp;L.E. Borges da Silva ,&nbsp;C.P. Salomon ,&nbsp;W.C. Santana ,&nbsp;J.G. Borges da Silva ,&nbsp;G. Lambert-Torres\",\"doi\":\"10.1016/j.aasri.2014.05.032\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper presents an equipment for predictive maintenance in large hydrogenerators. This equipment uses techniques of digital signal processing of the information contained in the electrical variables involved in the operation of the generator. Basically, the current and voltage signals of the generator are monitored and applied the techniques of electric signature analysis. The central idea is to unite the techniques of current signature analysis (CSA), voltage signature analysis (VSA) and Enhanced Park's Vector Approach (EPVA), to separate the spectra of signals and detect frequencies related to electrical and mechanical defects of generator-turbine set. This is possible because the generator is basically a device handling magnetic fields, so it's believable to infer that any operating conditions of all, somehow, influences the behavior of the magnetic field, reflecting noticeably in variations in signs of tensions and currents provided by its. The problem is to detect these variations, because some of them are under existing noise signs, and relate them to defects which they represent. This paper presents a real implementation in a hydrogenerator at Itapebi Power Plant, Brazil.</p></div>\",\"PeriodicalId\":100008,\"journal\":{\"name\":\"AASRI Procedia\",\"volume\":\"7 \",\"pages\":\"Pages 75-80\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.aasri.2014.05.032\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AASRI Procedia\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S221267161400033X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AASRI Procedia","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S221267161400033X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

摘要

介绍了一种大型水轮发电机组预测性维修设备。该设备采用数字信号处理技术,对发电机运行中涉及的电气变量中包含的信息进行处理。主要对发电机的电流和电压信号进行监测,并应用电特征分析技术。其核心思想是将电流特征分析(CSA)、电压特征分析(VSA)和增强型帕克矢量法(EPVA)技术结合起来,分离信号的频谱并检测与发电机组电气和机械缺陷相关的频率。这是可能的,因为发电机基本上是一个处理磁场的设备,所以可以相信,所有的任何操作条件,以某种方式,影响磁场的行为,在其提供的张力和电流的变化迹象中反映出明显的变化。问题是检测这些变化,因为其中一些是在现有的噪声标志下,并将它们与它们所代表的缺陷联系起来。本文介绍了该方法在巴西伊塔佩比电厂水轮发电机上的实际应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Equipment for Predictive Maintenance in Hydrogenerators

This paper presents an equipment for predictive maintenance in large hydrogenerators. This equipment uses techniques of digital signal processing of the information contained in the electrical variables involved in the operation of the generator. Basically, the current and voltage signals of the generator are monitored and applied the techniques of electric signature analysis. The central idea is to unite the techniques of current signature analysis (CSA), voltage signature analysis (VSA) and Enhanced Park's Vector Approach (EPVA), to separate the spectra of signals and detect frequencies related to electrical and mechanical defects of generator-turbine set. This is possible because the generator is basically a device handling magnetic fields, so it's believable to infer that any operating conditions of all, somehow, influences the behavior of the magnetic field, reflecting noticeably in variations in signs of tensions and currents provided by its. The problem is to detect these variations, because some of them are under existing noise signs, and relate them to defects which they represent. This paper presents a real implementation in a hydrogenerator at Itapebi Power Plant, Brazil.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Preface Preface Preface Preface Classification of Wild Animals based on SVM and Local Descriptors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1