基于虚拟机分组的任务调度提升云计算性能

Negar Chitgar, H. Jazayeriy, M. Rabiei
{"title":"基于虚拟机分组的任务调度提升云计算性能","authors":"Negar Chitgar, H. Jazayeriy, M. Rabiei","doi":"10.1109/IranianCEE.2019.8786391","DOIUrl":null,"url":null,"abstract":"The incredible rise of virtualization technology in cloud environments results the fostering workload which needs services provided by cloud resources. Task scheduling and Load balancing amongst the VMs and minimizing the makespan of the tasks are stimulating research concerns. In this paper, a method was introduced for scheduling workload based on VM grouping in cloud environments. The aim of the proposed method is improving cloud computing performance by reducing makespan and response time, and also through increasing VMs utilization. We evaluated the proposed algorithm with existing methods using various performance metrics. Evaluation results show that our proposed algorithm outperforms similar methods.","PeriodicalId":6683,"journal":{"name":"2019 27th Iranian Conference on Electrical Engineering (ICEE)","volume":"54 1","pages":"2095-2099"},"PeriodicalIF":0.0000,"publicationDate":"2019-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Improving Cloud Computing Performance Using Task Scheduling Method Based on VMs Grouping\",\"authors\":\"Negar Chitgar, H. Jazayeriy, M. Rabiei\",\"doi\":\"10.1109/IranianCEE.2019.8786391\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The incredible rise of virtualization technology in cloud environments results the fostering workload which needs services provided by cloud resources. Task scheduling and Load balancing amongst the VMs and minimizing the makespan of the tasks are stimulating research concerns. In this paper, a method was introduced for scheduling workload based on VM grouping in cloud environments. The aim of the proposed method is improving cloud computing performance by reducing makespan and response time, and also through increasing VMs utilization. We evaluated the proposed algorithm with existing methods using various performance metrics. Evaluation results show that our proposed algorithm outperforms similar methods.\",\"PeriodicalId\":6683,\"journal\":{\"name\":\"2019 27th Iranian Conference on Electrical Engineering (ICEE)\",\"volume\":\"54 1\",\"pages\":\"2095-2099\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 27th Iranian Conference on Electrical Engineering (ICEE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IranianCEE.2019.8786391\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 27th Iranian Conference on Electrical Engineering (ICEE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IranianCEE.2019.8786391","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

云环境中虚拟化技术的惊人崛起导致了需要云资源提供服务的工作负载的增加。虚拟机之间的任务调度和负载平衡以及最小化任务的最大完成时间是当前研究的热点。本文介绍了一种基于虚拟机分组的云环境下的工作负载调度方法。提出的方法的目的是通过减少makespan和响应时间以及通过增加vm利用率来提高云计算性能。我们使用各种性能指标与现有方法评估了所提出的算法。评估结果表明,我们提出的算法优于同类方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Improving Cloud Computing Performance Using Task Scheduling Method Based on VMs Grouping
The incredible rise of virtualization technology in cloud environments results the fostering workload which needs services provided by cloud resources. Task scheduling and Load balancing amongst the VMs and minimizing the makespan of the tasks are stimulating research concerns. In this paper, a method was introduced for scheduling workload based on VM grouping in cloud environments. The aim of the proposed method is improving cloud computing performance by reducing makespan and response time, and also through increasing VMs utilization. We evaluated the proposed algorithm with existing methods using various performance metrics. Evaluation results show that our proposed algorithm outperforms similar methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A New Graphene Nanoribbon based Resonant Tunneling Diodes using BN Quantum Well A Modified McEliece Public-Key Cryptosystem Based On Irregular Codes Of QC-LDPC and QC-MDPC A 6-bit 100-MS/s Fully-Digital Time-Based Analog-to-Digital Converter Direct Torque and Flux Control of Dual Stator Winding Induction Motor Drives based on Emotional Controller Measurement Time Reduction in Compliance Assessment of Electromagnetic Field Levels
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1