MCCA-Net:用于水下图像分类的多色卷积和注意力堆叠网络

Peixin Qu , Tengfei Li , Guohou Li , Zhen Tian , Xiwang Xie , Wenyi Zhao , Xipeng Pan , Weidong Zhang
{"title":"MCCA-Net:用于水下图像分类的多色卷积和注意力堆叠网络","authors":"Peixin Qu ,&nbsp;Tengfei Li ,&nbsp;Guohou Li ,&nbsp;Zhen Tian ,&nbsp;Xiwang Xie ,&nbsp;Wenyi Zhao ,&nbsp;Xipeng Pan ,&nbsp;Weidong Zhang","doi":"10.1016/j.cogr.2022.08.002","DOIUrl":null,"url":null,"abstract":"<div><p>Underwater images are serious problems affected by the absorption and scattering of light. At present, the existing sharpening methods can't effectively solve all underwater image degradation problems, thus it is necessary to propose a specific solution to the degradation problem. To solve the above problems, the Multi-Color Convolutional and Attentional Stacking Network (MCCA-Net) for Underwater image classification are proposed in this paper. First, an underwater image is converted to HSV and Lab color spaces and fused to achieve a refined image. Then, the attention mechanism module is used to fine the extracted image features. At last, the vertically stacked convolution module fully utilizes different levels of feature information, which realizes the fusion of convolution and attention mechanism, optimizes feature extraction and parameter reduction, and improves the classification performance of the MCCA-Net model. Extensive experiments on underwater degraded image classification show that our MCCA-Net model and method outperform other models and improve the accuracy of underwater degraded image classification. Our image fusion method can achieve 96.39% accuracy on other models, and the MCCA-Net model achieves 97.38% classification accuracy.</p></div>","PeriodicalId":100288,"journal":{"name":"Cognitive Robotics","volume":"2 ","pages":"Pages 211-221"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2667241322000192/pdfft?md5=9bb766a2fd8a481c394e42fdefd438ef&pid=1-s2.0-S2667241322000192-main.pdf","citationCount":"2","resultStr":"{\"title\":\"MCCA-Net: Multi-color convolution and attention stacked network for Underwater image classification\",\"authors\":\"Peixin Qu ,&nbsp;Tengfei Li ,&nbsp;Guohou Li ,&nbsp;Zhen Tian ,&nbsp;Xiwang Xie ,&nbsp;Wenyi Zhao ,&nbsp;Xipeng Pan ,&nbsp;Weidong Zhang\",\"doi\":\"10.1016/j.cogr.2022.08.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Underwater images are serious problems affected by the absorption and scattering of light. At present, the existing sharpening methods can't effectively solve all underwater image degradation problems, thus it is necessary to propose a specific solution to the degradation problem. To solve the above problems, the Multi-Color Convolutional and Attentional Stacking Network (MCCA-Net) for Underwater image classification are proposed in this paper. First, an underwater image is converted to HSV and Lab color spaces and fused to achieve a refined image. Then, the attention mechanism module is used to fine the extracted image features. At last, the vertically stacked convolution module fully utilizes different levels of feature information, which realizes the fusion of convolution and attention mechanism, optimizes feature extraction and parameter reduction, and improves the classification performance of the MCCA-Net model. Extensive experiments on underwater degraded image classification show that our MCCA-Net model and method outperform other models and improve the accuracy of underwater degraded image classification. Our image fusion method can achieve 96.39% accuracy on other models, and the MCCA-Net model achieves 97.38% classification accuracy.</p></div>\",\"PeriodicalId\":100288,\"journal\":{\"name\":\"Cognitive Robotics\",\"volume\":\"2 \",\"pages\":\"Pages 211-221\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2667241322000192/pdfft?md5=9bb766a2fd8a481c394e42fdefd438ef&pid=1-s2.0-S2667241322000192-main.pdf\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cognitive Robotics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2667241322000192\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cognitive Robotics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667241322000192","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

水下图像是受光的吸收和散射影响的严重问题。目前,现有的锐化方法并不能有效解决所有的水下图像退化问题,因此有必要针对退化问题提出具体的解决方案。为了解决上述问题,本文提出了一种用于水下图像分类的多色卷积和注意叠加网络(MCCA-Net)。首先,将水下图像转换为HSV和Lab色彩空间并融合以获得精细图像。然后,利用注意机制模块对提取的图像特征进行细化。最后,垂直堆叠的卷积模块充分利用了不同层次的特征信息,实现了卷积与注意机制的融合,优化了特征提取和参数约简,提高了MCCA-Net模型的分类性能。大量的水下退化图像分类实验表明,我们的MCCA-Net模型和方法优于其他模型,提高了水下退化图像分类的精度。我们的图像融合方法在其他模型上的分类准确率达到96.39%,其中MCCA-Net模型的分类准确率达到97.38%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
MCCA-Net: Multi-color convolution and attention stacked network for Underwater image classification

Underwater images are serious problems affected by the absorption and scattering of light. At present, the existing sharpening methods can't effectively solve all underwater image degradation problems, thus it is necessary to propose a specific solution to the degradation problem. To solve the above problems, the Multi-Color Convolutional and Attentional Stacking Network (MCCA-Net) for Underwater image classification are proposed in this paper. First, an underwater image is converted to HSV and Lab color spaces and fused to achieve a refined image. Then, the attention mechanism module is used to fine the extracted image features. At last, the vertically stacked convolution module fully utilizes different levels of feature information, which realizes the fusion of convolution and attention mechanism, optimizes feature extraction and parameter reduction, and improves the classification performance of the MCCA-Net model. Extensive experiments on underwater degraded image classification show that our MCCA-Net model and method outperform other models and improve the accuracy of underwater degraded image classification. Our image fusion method can achieve 96.39% accuracy on other models, and the MCCA-Net model achieves 97.38% classification accuracy.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.40
自引率
0.00%
发文量
0
期刊最新文献
Optimizing Food Sample Handling and Placement Pattern Recognition with YOLO: Advanced Techniques in Robotic Object Detection Intelligent path planning for cognitive mobile robot based on Dhouib-Matrix-SPP method YOLOT: Multi-scale and diverse tire sidewall text region detection based on You-Only-Look-Once(YOLOv5) Scalable and cohesive swarm control based on reinforcement learning POMDP-based probabilistic decision making for path planning in wheeled mobile robot
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1