T. Higashi, M. Yokota, Ayaka Goto, Kenji Komatsu, Takahiro Sugiura, Shoujiro Ogawa, M. Satoh, F. Nomura
{"title":"质子亲和型cookson试剂衍生后LC/ESI-MS/MS同时测定新生儿血浆中25-羟基维生素D3及其3-硫酸盐的方法","authors":"T. Higashi, M. Yokota, Ayaka Goto, Kenji Komatsu, Takahiro Sugiura, Shoujiro Ogawa, M. Satoh, F. Nomura","doi":"10.5702/massspectrometry.S0051","DOIUrl":null,"url":null,"abstract":"A method for the simultaneous determination of 25-hydroxyvitamin D3 [25(OH)D3] and its 3-sulfate [25(OH)D3S] in newborn plasma, which is expected to be helpful in the assessment of the vitamin D status, using stable isotope-dilution liquid chromatography/electrospray ionization-tandem mass spectrometry (LC/ESI-MS/MS) has been developed and validated. The plasma was pretreated based on the deproteinization and solid-phase extraction, then subjected to derivatization with 4-(4-dimethylaminophenyl)-1,2,4-triazoline-3,5-dione (DAPTAD). The derivatization enabled the accurate quantification of 25(OH)D3 without interference from 3-epi-25(OH)D3 and also facilitated the simultaneous determination of the two metabolites by LC/positive ESI-MS/MS. Quantification was based on the selected reaction monitoring with the characteristic fragmentation of the DAPTAD-derivatives during MS/MS. This method was reproducible (intra- and inter-assay relative standard deviations of 7.8% or lower for both metabolites) and accurate (analytical recovery, 95.4-105.6%). The limits of quantification were 1.0 ng/mL and 2.5 ng/mL for 25(OH)D3 and 25(OH)D3S, respectively, when using a 20-μL sample. The developed method was applied to the simultaneous determination of plasma 25(OH)D3 and 25(OH)D3S in newborns; it was recognized that the plasma concentration of 25(OH)D3S is significantly higher than that of 25(OH)D3, and preterm newborns have lower plasma 25(OH)D3S concentrations than full-term newborns.","PeriodicalId":18243,"journal":{"name":"Mass spectrometry","volume":"2016 1","pages":"S0051"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"A Method for Simultaneous Determination of 25-Hydroxyvitamin D3 and Its 3-Sulfate in Newborn Plasma by LC/ESI-MS/MS after Derivatization with a Proton-Affinitive Cookson-Type Reagent.\",\"authors\":\"T. Higashi, M. Yokota, Ayaka Goto, Kenji Komatsu, Takahiro Sugiura, Shoujiro Ogawa, M. Satoh, F. Nomura\",\"doi\":\"10.5702/massspectrometry.S0051\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A method for the simultaneous determination of 25-hydroxyvitamin D3 [25(OH)D3] and its 3-sulfate [25(OH)D3S] in newborn plasma, which is expected to be helpful in the assessment of the vitamin D status, using stable isotope-dilution liquid chromatography/electrospray ionization-tandem mass spectrometry (LC/ESI-MS/MS) has been developed and validated. The plasma was pretreated based on the deproteinization and solid-phase extraction, then subjected to derivatization with 4-(4-dimethylaminophenyl)-1,2,4-triazoline-3,5-dione (DAPTAD). The derivatization enabled the accurate quantification of 25(OH)D3 without interference from 3-epi-25(OH)D3 and also facilitated the simultaneous determination of the two metabolites by LC/positive ESI-MS/MS. Quantification was based on the selected reaction monitoring with the characteristic fragmentation of the DAPTAD-derivatives during MS/MS. This method was reproducible (intra- and inter-assay relative standard deviations of 7.8% or lower for both metabolites) and accurate (analytical recovery, 95.4-105.6%). The limits of quantification were 1.0 ng/mL and 2.5 ng/mL for 25(OH)D3 and 25(OH)D3S, respectively, when using a 20-μL sample. The developed method was applied to the simultaneous determination of plasma 25(OH)D3 and 25(OH)D3S in newborns; it was recognized that the plasma concentration of 25(OH)D3S is significantly higher than that of 25(OH)D3, and preterm newborns have lower plasma 25(OH)D3S concentrations than full-term newborns.\",\"PeriodicalId\":18243,\"journal\":{\"name\":\"Mass spectrometry\",\"volume\":\"2016 1\",\"pages\":\"S0051\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mass spectrometry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5702/massspectrometry.S0051\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Physics and Astronomy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mass spectrometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5702/massspectrometry.S0051","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Physics and Astronomy","Score":null,"Total":0}
A Method for Simultaneous Determination of 25-Hydroxyvitamin D3 and Its 3-Sulfate in Newborn Plasma by LC/ESI-MS/MS after Derivatization with a Proton-Affinitive Cookson-Type Reagent.
A method for the simultaneous determination of 25-hydroxyvitamin D3 [25(OH)D3] and its 3-sulfate [25(OH)D3S] in newborn plasma, which is expected to be helpful in the assessment of the vitamin D status, using stable isotope-dilution liquid chromatography/electrospray ionization-tandem mass spectrometry (LC/ESI-MS/MS) has been developed and validated. The plasma was pretreated based on the deproteinization and solid-phase extraction, then subjected to derivatization with 4-(4-dimethylaminophenyl)-1,2,4-triazoline-3,5-dione (DAPTAD). The derivatization enabled the accurate quantification of 25(OH)D3 without interference from 3-epi-25(OH)D3 and also facilitated the simultaneous determination of the two metabolites by LC/positive ESI-MS/MS. Quantification was based on the selected reaction monitoring with the characteristic fragmentation of the DAPTAD-derivatives during MS/MS. This method was reproducible (intra- and inter-assay relative standard deviations of 7.8% or lower for both metabolites) and accurate (analytical recovery, 95.4-105.6%). The limits of quantification were 1.0 ng/mL and 2.5 ng/mL for 25(OH)D3 and 25(OH)D3S, respectively, when using a 20-μL sample. The developed method was applied to the simultaneous determination of plasma 25(OH)D3 and 25(OH)D3S in newborns; it was recognized that the plasma concentration of 25(OH)D3S is significantly higher than that of 25(OH)D3, and preterm newborns have lower plasma 25(OH)D3S concentrations than full-term newborns.