基于无模型自适应控制的电池储能系统电源管理

Weiming Zhang, Dezhi Xu, X. Lou, Wenxu Yan, Weilin Yang
{"title":"基于无模型自适应控制的电池储能系统电源管理","authors":"Weiming Zhang, Dezhi Xu, X. Lou, Wenxu Yan, Weilin Yang","doi":"10.1109/DDCLS.2018.8516079","DOIUrl":null,"url":null,"abstract":"A novel adaptive control strategy based on input/output (I/O) data is proposed in this paper to solve the problem of power management of battery energy storage system (BESS). In the proposed control strategy, a time-varying parameter named pseudo-partial derivative (PPD) parameter utilized in dynamic linearization is estimated by an adaptive observer. Besides, the input saturation problem is considered and a compensation signal is added to consummate the anti-windup control algorithm. Finally, simulation results are presented to validate the effectiveness and performance of the proposed control strategy.","PeriodicalId":6565,"journal":{"name":"2018 IEEE 7th Data Driven Control and Learning Systems Conference (DDCLS)","volume":"27 1","pages":"798-801"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Power Management of Battery Energy Storage System Using Model Free Adaptive Control\",\"authors\":\"Weiming Zhang, Dezhi Xu, X. Lou, Wenxu Yan, Weilin Yang\",\"doi\":\"10.1109/DDCLS.2018.8516079\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A novel adaptive control strategy based on input/output (I/O) data is proposed in this paper to solve the problem of power management of battery energy storage system (BESS). In the proposed control strategy, a time-varying parameter named pseudo-partial derivative (PPD) parameter utilized in dynamic linearization is estimated by an adaptive observer. Besides, the input saturation problem is considered and a compensation signal is added to consummate the anti-windup control algorithm. Finally, simulation results are presented to validate the effectiveness and performance of the proposed control strategy.\",\"PeriodicalId\":6565,\"journal\":{\"name\":\"2018 IEEE 7th Data Driven Control and Learning Systems Conference (DDCLS)\",\"volume\":\"27 1\",\"pages\":\"798-801\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE 7th Data Driven Control and Learning Systems Conference (DDCLS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DDCLS.2018.8516079\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 7th Data Driven Control and Learning Systems Conference (DDCLS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DDCLS.2018.8516079","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

针对电池储能系统的电源管理问题,提出了一种基于输入/输出(I/O)数据的自适应控制策略。在该控制策略中,利用自适应观测器估计动态线性化中使用的时变参数伪偏导数参数。此外,考虑了输入饱和问题,并加入了补偿信号,完善了反绕组控制算法。最后给出了仿真结果,验证了所提控制策略的有效性和性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Power Management of Battery Energy Storage System Using Model Free Adaptive Control
A novel adaptive control strategy based on input/output (I/O) data is proposed in this paper to solve the problem of power management of battery energy storage system (BESS). In the proposed control strategy, a time-varying parameter named pseudo-partial derivative (PPD) parameter utilized in dynamic linearization is estimated by an adaptive observer. Besides, the input saturation problem is considered and a compensation signal is added to consummate the anti-windup control algorithm. Finally, simulation results are presented to validate the effectiveness and performance of the proposed control strategy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Fault Diagnosis of High-speed Train Bogie Based on Spectrogram and Multi-channel Voting Yarn-dyed Fabric Defect Detection with YOLOV2 Based on Deep Convolution Neural Networks On the Design and Analysis of a Learning Control Algorithm for Point-to-point Tracking Tasks Iterative Learning Control for Singular System with An Arbitrary Initial State A Comparative Study of Adaptive Soft Sensors for Quality Prediction in an Industrial Refining Hydrocracking Process
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1