{"title":"建立了同时测定注射剂型头孢呋辛钠和舒巴坦钠含量的高效液相色谱法","authors":"F. M. Patel, J. Dave, P. J. Vyas, C. Patel","doi":"10.4103/2229-5186.103096","DOIUrl":null,"url":null,"abstract":"Background: A fixed dose combination of cefuroxime sodium (β lactam antibiotic) and sulbactam sodium (β Lactamase inhibitor) is used in ratio of 2:1 as powder for injection for the treatment of resistant lower respiratory tract and other infections. Aims: A simple, precise, and accurate ion-pair reverse-phase high-performance liquid chromatography (RP-HPLC) method was developed and validated for determination of cefuroxime Na(CEF) and sulbactam Na(SUL) in injection. Materials and Methods: Isocratic RP-HPLC separation was achieved on an ACE C 18 column (150×4.6 mm id, 5 μm particle size) using the mobile phase 0.002 M tetrabutylammonium hydroxide sulfate (TBAH) in 10 mm potassium di-hydrogen phosphate buffer-acetonitrile (86:14 v/v, pH 3.7) at a flow rate of 1.0 ml/min. Results and Conclusion: The retention time of sulbactam Na and cefuroxime Na were 3.2 min and 10.2 min, respectively. The ion-pairing reagent improved the retention of highly polar sulbactam Na on reverse-phase column. The detection was performed at 210 nm. The method was validated for linearity, precision, accuracy, robustness, solution stability, and specificity. The method was validated for linearity, precision, accuracy, robustness, solution stability, and specificity. The method was linear in the concentration range of 10-100 μg/ml for cefuroxime Na and 5-50 μg/ml for sulbactam Na, with a correlation coefficient of 0.9999 and 0.9998 for the respective drugs. The intraday precision was 0.13-0.21% and 0.48-0.65%, and the interday precision was 0.32-0.81% and 0.60-0.83% for cefuroxime Na and sulbactam Na, respectively. The accuracy (recovery) was found to be in the range of 98.76-100.61% and 98.99-100.30% for cefuroxime Na and sulbactam Na, respectively. The drugs were found to degrade under hydrolytic and oxidative conditions. The drugs could be effectively separated from different degradation products, and hence the method can be used for stability analysis.","PeriodicalId":10187,"journal":{"name":"Chronicles of Young Scientists","volume":"102 1","pages":"279"},"PeriodicalIF":0.0000,"publicationDate":"2012-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A validated stability indicating high-performance liquid chromatographic method for simultaneous estimation of cefuroxime sodium and sulbactam sodium in injection dosage form\",\"authors\":\"F. M. Patel, J. Dave, P. J. Vyas, C. Patel\",\"doi\":\"10.4103/2229-5186.103096\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Background: A fixed dose combination of cefuroxime sodium (β lactam antibiotic) and sulbactam sodium (β Lactamase inhibitor) is used in ratio of 2:1 as powder for injection for the treatment of resistant lower respiratory tract and other infections. Aims: A simple, precise, and accurate ion-pair reverse-phase high-performance liquid chromatography (RP-HPLC) method was developed and validated for determination of cefuroxime Na(CEF) and sulbactam Na(SUL) in injection. Materials and Methods: Isocratic RP-HPLC separation was achieved on an ACE C 18 column (150×4.6 mm id, 5 μm particle size) using the mobile phase 0.002 M tetrabutylammonium hydroxide sulfate (TBAH) in 10 mm potassium di-hydrogen phosphate buffer-acetonitrile (86:14 v/v, pH 3.7) at a flow rate of 1.0 ml/min. Results and Conclusion: The retention time of sulbactam Na and cefuroxime Na were 3.2 min and 10.2 min, respectively. The ion-pairing reagent improved the retention of highly polar sulbactam Na on reverse-phase column. The detection was performed at 210 nm. The method was validated for linearity, precision, accuracy, robustness, solution stability, and specificity. The method was validated for linearity, precision, accuracy, robustness, solution stability, and specificity. The method was linear in the concentration range of 10-100 μg/ml for cefuroxime Na and 5-50 μg/ml for sulbactam Na, with a correlation coefficient of 0.9999 and 0.9998 for the respective drugs. The intraday precision was 0.13-0.21% and 0.48-0.65%, and the interday precision was 0.32-0.81% and 0.60-0.83% for cefuroxime Na and sulbactam Na, respectively. The accuracy (recovery) was found to be in the range of 98.76-100.61% and 98.99-100.30% for cefuroxime Na and sulbactam Na, respectively. The drugs were found to degrade under hydrolytic and oxidative conditions. The drugs could be effectively separated from different degradation products, and hence the method can be used for stability analysis.\",\"PeriodicalId\":10187,\"journal\":{\"name\":\"Chronicles of Young Scientists\",\"volume\":\"102 1\",\"pages\":\"279\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chronicles of Young Scientists\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4103/2229-5186.103096\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chronicles of Young Scientists","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4103/2229-5186.103096","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A validated stability indicating high-performance liquid chromatographic method for simultaneous estimation of cefuroxime sodium and sulbactam sodium in injection dosage form
Background: A fixed dose combination of cefuroxime sodium (β lactam antibiotic) and sulbactam sodium (β Lactamase inhibitor) is used in ratio of 2:1 as powder for injection for the treatment of resistant lower respiratory tract and other infections. Aims: A simple, precise, and accurate ion-pair reverse-phase high-performance liquid chromatography (RP-HPLC) method was developed and validated for determination of cefuroxime Na(CEF) and sulbactam Na(SUL) in injection. Materials and Methods: Isocratic RP-HPLC separation was achieved on an ACE C 18 column (150×4.6 mm id, 5 μm particle size) using the mobile phase 0.002 M tetrabutylammonium hydroxide sulfate (TBAH) in 10 mm potassium di-hydrogen phosphate buffer-acetonitrile (86:14 v/v, pH 3.7) at a flow rate of 1.0 ml/min. Results and Conclusion: The retention time of sulbactam Na and cefuroxime Na were 3.2 min and 10.2 min, respectively. The ion-pairing reagent improved the retention of highly polar sulbactam Na on reverse-phase column. The detection was performed at 210 nm. The method was validated for linearity, precision, accuracy, robustness, solution stability, and specificity. The method was validated for linearity, precision, accuracy, robustness, solution stability, and specificity. The method was linear in the concentration range of 10-100 μg/ml for cefuroxime Na and 5-50 μg/ml for sulbactam Na, with a correlation coefficient of 0.9999 and 0.9998 for the respective drugs. The intraday precision was 0.13-0.21% and 0.48-0.65%, and the interday precision was 0.32-0.81% and 0.60-0.83% for cefuroxime Na and sulbactam Na, respectively. The accuracy (recovery) was found to be in the range of 98.76-100.61% and 98.99-100.30% for cefuroxime Na and sulbactam Na, respectively. The drugs were found to degrade under hydrolytic and oxidative conditions. The drugs could be effectively separated from different degradation products, and hence the method can be used for stability analysis.