{"title":"掺杂汞和荧光增白剂的紫外检测传感器","authors":"M. Zolkapli, Adila Sani, H. Saad","doi":"10.1109/ICP46580.2020.9206482","DOIUrl":null,"url":null,"abstract":"In this paper, an ultraviolet (UV) sensor based on optical sensing is presented. The center region of the fiber optic is covered with dyes or UV markers. Two configurations of sensors were fabricated which are based on fluorescent brightener and mercury dyes doped. The effect on the sensitivity and linearity of differences in length and illumination intensity were observed. For this experiment, 1000μm diameter of plastic optical fiber (POF), UVA (365nm) and UVC (265nm) as the UV sources were used. Meanwhile, for the light source, Deuterium and Halogen was applied. To obtain the result, one end of the fiber was connected to the light source and another one was to a spectrometer and the dyes were exposed to UV source as to observe the emission spectra. As a result, the fluorescent emission obtained for the sensors doped with Fluorescent Brightener and mercury were at 500nm and 600nm wavelengths respectively. In summary, the 6cm unclad fiber which is coated with fluorescent brightener and exposed to UVA is the most suitable since it shows the best characteristics.","PeriodicalId":6758,"journal":{"name":"2020 IEEE 8th International Conference on Photonics (ICP)","volume":"1 1","pages":"113-114"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sensor for Ultraviolet (UV) Detection Doped with Mercury and Fluorescent Brightener\",\"authors\":\"M. Zolkapli, Adila Sani, H. Saad\",\"doi\":\"10.1109/ICP46580.2020.9206482\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, an ultraviolet (UV) sensor based on optical sensing is presented. The center region of the fiber optic is covered with dyes or UV markers. Two configurations of sensors were fabricated which are based on fluorescent brightener and mercury dyes doped. The effect on the sensitivity and linearity of differences in length and illumination intensity were observed. For this experiment, 1000μm diameter of plastic optical fiber (POF), UVA (365nm) and UVC (265nm) as the UV sources were used. Meanwhile, for the light source, Deuterium and Halogen was applied. To obtain the result, one end of the fiber was connected to the light source and another one was to a spectrometer and the dyes were exposed to UV source as to observe the emission spectra. As a result, the fluorescent emission obtained for the sensors doped with Fluorescent Brightener and mercury were at 500nm and 600nm wavelengths respectively. In summary, the 6cm unclad fiber which is coated with fluorescent brightener and exposed to UVA is the most suitable since it shows the best characteristics.\",\"PeriodicalId\":6758,\"journal\":{\"name\":\"2020 IEEE 8th International Conference on Photonics (ICP)\",\"volume\":\"1 1\",\"pages\":\"113-114\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE 8th International Conference on Photonics (ICP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICP46580.2020.9206482\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 8th International Conference on Photonics (ICP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICP46580.2020.9206482","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Sensor for Ultraviolet (UV) Detection Doped with Mercury and Fluorescent Brightener
In this paper, an ultraviolet (UV) sensor based on optical sensing is presented. The center region of the fiber optic is covered with dyes or UV markers. Two configurations of sensors were fabricated which are based on fluorescent brightener and mercury dyes doped. The effect on the sensitivity and linearity of differences in length and illumination intensity were observed. For this experiment, 1000μm diameter of plastic optical fiber (POF), UVA (365nm) and UVC (265nm) as the UV sources were used. Meanwhile, for the light source, Deuterium and Halogen was applied. To obtain the result, one end of the fiber was connected to the light source and another one was to a spectrometer and the dyes were exposed to UV source as to observe the emission spectra. As a result, the fluorescent emission obtained for the sensors doped with Fluorescent Brightener and mercury were at 500nm and 600nm wavelengths respectively. In summary, the 6cm unclad fiber which is coated with fluorescent brightener and exposed to UVA is the most suitable since it shows the best characteristics.