{"title":"一种45nm 6b/cell电荷捕获闪存,采用基于ldpc的ECC和漂移免疫软测量引擎","authors":"Kin-Chu Ho, Po-Chao Fang, Hsiang-Pang Li, Cheng-Yuan Michael Wang, Hsie-Chia Chang","doi":"10.1109/ISSCC.2013.6487709","DOIUrl":null,"url":null,"abstract":"To satisfy the demand of higher storage density, storing multiple-bits-per-cell technique is widely adopted. As presented in [1], a 4b/cell Flash memory by using error-detection (ED) scheme stores 2b data on two sides of a memory cell individually. Since the noise margin becomes smaller, the distribution drifts due to program disturb, data retention and temperature variation will cause higher raw bit-error-rate (RBER) if the sensing level (voltage) are not adjusted accordingly. The ED scheme can detect the drift direction by counting and storing the number of cells (Ni) with threshold voltage (VTH) below the ith sensing level (VREF i). A simple example with page size 1KB is demonstrated in Fig. 12.7.1. During a read operation, the number of cells (Ni, measured) whose VTH below VREF i is counted and compared to Ni. The ED scheme can find out a sub-optimal sensing level when Ni, measured and Ni is close enough. In this paper, a production 16Gb 45nm 4b/cell ONO-based charge-trapping (CT) Flash memory is demonstrated to achieve 6b/cell capability. Since the adjacent distributions for 6b/cell are much closer to each other, even a BCH code with ED scheme fails to correct all the patterns. However, by using a new 1-3-3 mapping and LDPC codes with a developed drift-immune soft-sensing (DI-SS) engine, the 45nm 4b/cell CT Flash memory is boosted to 6b/cell. The data flow of programming data is also shown in Fig. 12.7.1.","PeriodicalId":6378,"journal":{"name":"2013 IEEE International Solid-State Circuits Conference Digest of Technical Papers","volume":"53 1","pages":"222-223"},"PeriodicalIF":0.0000,"publicationDate":"2013-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"45","resultStr":"{\"title\":\"A 45nm 6b/cell charge-trapping flash memory using LDPC-based ECC and drift-immune soft-sensing engine\",\"authors\":\"Kin-Chu Ho, Po-Chao Fang, Hsiang-Pang Li, Cheng-Yuan Michael Wang, Hsie-Chia Chang\",\"doi\":\"10.1109/ISSCC.2013.6487709\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To satisfy the demand of higher storage density, storing multiple-bits-per-cell technique is widely adopted. As presented in [1], a 4b/cell Flash memory by using error-detection (ED) scheme stores 2b data on two sides of a memory cell individually. Since the noise margin becomes smaller, the distribution drifts due to program disturb, data retention and temperature variation will cause higher raw bit-error-rate (RBER) if the sensing level (voltage) are not adjusted accordingly. The ED scheme can detect the drift direction by counting and storing the number of cells (Ni) with threshold voltage (VTH) below the ith sensing level (VREF i). A simple example with page size 1KB is demonstrated in Fig. 12.7.1. During a read operation, the number of cells (Ni, measured) whose VTH below VREF i is counted and compared to Ni. The ED scheme can find out a sub-optimal sensing level when Ni, measured and Ni is close enough. In this paper, a production 16Gb 45nm 4b/cell ONO-based charge-trapping (CT) Flash memory is demonstrated to achieve 6b/cell capability. Since the adjacent distributions for 6b/cell are much closer to each other, even a BCH code with ED scheme fails to correct all the patterns. However, by using a new 1-3-3 mapping and LDPC codes with a developed drift-immune soft-sensing (DI-SS) engine, the 45nm 4b/cell CT Flash memory is boosted to 6b/cell. The data flow of programming data is also shown in Fig. 12.7.1.\",\"PeriodicalId\":6378,\"journal\":{\"name\":\"2013 IEEE International Solid-State Circuits Conference Digest of Technical Papers\",\"volume\":\"53 1\",\"pages\":\"222-223\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-03-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"45\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE International Solid-State Circuits Conference Digest of Technical Papers\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISSCC.2013.6487709\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE International Solid-State Circuits Conference Digest of Technical Papers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSCC.2013.6487709","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A 45nm 6b/cell charge-trapping flash memory using LDPC-based ECC and drift-immune soft-sensing engine
To satisfy the demand of higher storage density, storing multiple-bits-per-cell technique is widely adopted. As presented in [1], a 4b/cell Flash memory by using error-detection (ED) scheme stores 2b data on two sides of a memory cell individually. Since the noise margin becomes smaller, the distribution drifts due to program disturb, data retention and temperature variation will cause higher raw bit-error-rate (RBER) if the sensing level (voltage) are not adjusted accordingly. The ED scheme can detect the drift direction by counting and storing the number of cells (Ni) with threshold voltage (VTH) below the ith sensing level (VREF i). A simple example with page size 1KB is demonstrated in Fig. 12.7.1. During a read operation, the number of cells (Ni, measured) whose VTH below VREF i is counted and compared to Ni. The ED scheme can find out a sub-optimal sensing level when Ni, measured and Ni is close enough. In this paper, a production 16Gb 45nm 4b/cell ONO-based charge-trapping (CT) Flash memory is demonstrated to achieve 6b/cell capability. Since the adjacent distributions for 6b/cell are much closer to each other, even a BCH code with ED scheme fails to correct all the patterns. However, by using a new 1-3-3 mapping and LDPC codes with a developed drift-immune soft-sensing (DI-SS) engine, the 45nm 4b/cell CT Flash memory is boosted to 6b/cell. The data flow of programming data is also shown in Fig. 12.7.1.