Seon-Kyoo Lee, Seung-Hun Lee, D. Sylvester, D. Blaauw, J. Sim
{"title":"95fJ/b电流模式收发器,用于10mm片上互连","authors":"Seon-Kyoo Lee, Seung-Hun Lee, D. Sylvester, D. Blaauw, J. Sim","doi":"10.1109/ISSCC.2013.6487727","DOIUrl":null,"url":null,"abstract":"Data communication between local system blocks through on-chip global interconnects presents significant design challenges in scaled VLSI systems. The goal of this research is to reduce the energy consumed per bit transmitted, while achieving Gb/s data rates over interconnect lengths up to 10mm. Voltage-mode signaling with capacitive boosting [1-2] has been proposed for low-power on-chip interconnects. To increase the data rate over RC-limited interconnect, aggressive equalization schemes should be used in receivers [1-3] and transmitters [1-2] at the cost of significant power consumption. As an alternative to voltage-mode signaling, current-mode signaling has been considered. It was originally used for fast bitline sensing in memory [4-5] to take inherent advantage of a reduced RC time constant. However, prior work on current-mode transceivers for on-chip interconnect shows worse energy efficiency than their voltage-mode counterparts due to large static power dissipation by current-sensing circuit [6-7]. This paper presents a 95fJ/b current-mode transceiver for on-chip global interconnect. The transceiver is implemented in 65nm CMOS and achieves a data rate of up to 4Gb/s over a 10mm link with a BER of less than 10-12.","PeriodicalId":6378,"journal":{"name":"2013 IEEE International Solid-State Circuits Conference Digest of Technical Papers","volume":"32 1","pages":"262-263"},"PeriodicalIF":0.0000,"publicationDate":"2013-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"40","resultStr":"{\"title\":\"A 95fJ/b current-mode transceiver for 10mm on-chip interconnect\",\"authors\":\"Seon-Kyoo Lee, Seung-Hun Lee, D. Sylvester, D. Blaauw, J. Sim\",\"doi\":\"10.1109/ISSCC.2013.6487727\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Data communication between local system blocks through on-chip global interconnects presents significant design challenges in scaled VLSI systems. The goal of this research is to reduce the energy consumed per bit transmitted, while achieving Gb/s data rates over interconnect lengths up to 10mm. Voltage-mode signaling with capacitive boosting [1-2] has been proposed for low-power on-chip interconnects. To increase the data rate over RC-limited interconnect, aggressive equalization schemes should be used in receivers [1-3] and transmitters [1-2] at the cost of significant power consumption. As an alternative to voltage-mode signaling, current-mode signaling has been considered. It was originally used for fast bitline sensing in memory [4-5] to take inherent advantage of a reduced RC time constant. However, prior work on current-mode transceivers for on-chip interconnect shows worse energy efficiency than their voltage-mode counterparts due to large static power dissipation by current-sensing circuit [6-7]. This paper presents a 95fJ/b current-mode transceiver for on-chip global interconnect. The transceiver is implemented in 65nm CMOS and achieves a data rate of up to 4Gb/s over a 10mm link with a BER of less than 10-12.\",\"PeriodicalId\":6378,\"journal\":{\"name\":\"2013 IEEE International Solid-State Circuits Conference Digest of Technical Papers\",\"volume\":\"32 1\",\"pages\":\"262-263\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-03-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"40\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE International Solid-State Circuits Conference Digest of Technical Papers\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISSCC.2013.6487727\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE International Solid-State Circuits Conference Digest of Technical Papers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSCC.2013.6487727","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A 95fJ/b current-mode transceiver for 10mm on-chip interconnect
Data communication between local system blocks through on-chip global interconnects presents significant design challenges in scaled VLSI systems. The goal of this research is to reduce the energy consumed per bit transmitted, while achieving Gb/s data rates over interconnect lengths up to 10mm. Voltage-mode signaling with capacitive boosting [1-2] has been proposed for low-power on-chip interconnects. To increase the data rate over RC-limited interconnect, aggressive equalization schemes should be used in receivers [1-3] and transmitters [1-2] at the cost of significant power consumption. As an alternative to voltage-mode signaling, current-mode signaling has been considered. It was originally used for fast bitline sensing in memory [4-5] to take inherent advantage of a reduced RC time constant. However, prior work on current-mode transceivers for on-chip interconnect shows worse energy efficiency than their voltage-mode counterparts due to large static power dissipation by current-sensing circuit [6-7]. This paper presents a 95fJ/b current-mode transceiver for on-chip global interconnect. The transceiver is implemented in 65nm CMOS and achieves a data rate of up to 4Gb/s over a 10mm link with a BER of less than 10-12.