《炉石传说》中的进化甲板建造

P. García-Sánchez, A. Tonda, Giovanni Squillero, A. García, J. J. M. Guervós
{"title":"《炉石传说》中的进化甲板建造","authors":"P. García-Sánchez, A. Tonda, Giovanni Squillero, A. García, J. J. M. Guervós","doi":"10.1109/CIG.2016.7860426","DOIUrl":null,"url":null,"abstract":"One of the most notable features of collectible card games is deckbuilding, that is, defining a personalized deck before the real game. Deckbuilding is a challenge that involves a big and rugged search space, with different and unpredictable behaviour after simple card changes and even hidden information. In this paper, we explore the possibility of automated deckbuilding: a genetic algorithm is applied to the task, with the evaluation delegated to a game simulator that tests every potential deck against a varied and representative range of human-made decks. In these preliminary experiments, the approach has proven able to create quite effective decks, a promising result that proves that, even in this challenging environment, evolutionary algorithms can find good solutions.","PeriodicalId":6594,"journal":{"name":"2016 IEEE Conference on Computational Intelligence and Games (CIG)","volume":"1 1","pages":"1-8"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"42","resultStr":"{\"title\":\"Evolutionary deckbuilding in hearthstone\",\"authors\":\"P. García-Sánchez, A. Tonda, Giovanni Squillero, A. García, J. J. M. Guervós\",\"doi\":\"10.1109/CIG.2016.7860426\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"One of the most notable features of collectible card games is deckbuilding, that is, defining a personalized deck before the real game. Deckbuilding is a challenge that involves a big and rugged search space, with different and unpredictable behaviour after simple card changes and even hidden information. In this paper, we explore the possibility of automated deckbuilding: a genetic algorithm is applied to the task, with the evaluation delegated to a game simulator that tests every potential deck against a varied and representative range of human-made decks. In these preliminary experiments, the approach has proven able to create quite effective decks, a promising result that proves that, even in this challenging environment, evolutionary algorithms can find good solutions.\",\"PeriodicalId\":6594,\"journal\":{\"name\":\"2016 IEEE Conference on Computational Intelligence and Games (CIG)\",\"volume\":\"1 1\",\"pages\":\"1-8\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"42\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE Conference on Computational Intelligence and Games (CIG)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CIG.2016.7860426\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE Conference on Computational Intelligence and Games (CIG)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIG.2016.7860426","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 42

摘要

可收集卡牌游戏最显著的特点之一是桥牌构建,即在真正的游戏开始前定义个性化的桥牌。牌组构建是一项挑战,它涉及到一个巨大而坚固的搜索空间,在简单的牌组更改后,甚至隐藏的信息都会产生不同且不可预测的行为。在本文中,我们探索了自动化套牌构建的可能性:将遗传算法应用于该任务,并将评估委托给游戏模拟器,该模拟器针对各种具有代表性的人造套牌测试每个潜在的套牌。在这些初步实验中,该方法已被证明能够创建相当有效的甲板,这一有希望的结果证明,即使在这种具有挑战性的环境中,进化算法也可以找到好的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Evolutionary deckbuilding in hearthstone
One of the most notable features of collectible card games is deckbuilding, that is, defining a personalized deck before the real game. Deckbuilding is a challenge that involves a big and rugged search space, with different and unpredictable behaviour after simple card changes and even hidden information. In this paper, we explore the possibility of automated deckbuilding: a genetic algorithm is applied to the task, with the evaluation delegated to a game simulator that tests every potential deck against a varied and representative range of human-made decks. In these preliminary experiments, the approach has proven able to create quite effective decks, a promising result that proves that, even in this challenging environment, evolutionary algorithms can find good solutions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Human gesture classification by brute-force machine learning for exergaming in physiotherapy Evolving micro for 3D Real-Time Strategy games Constrained surprise search for content generation Design influence on player retention: A method based on time varying survival analysis Deep Q-learning using redundant outputs in visual doom
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1