基于神经网络优化搜索空间的压电驱动纳米工作台动态跟踪预测控制

IF 2.4 3区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Journal of Intelligent Material Systems and Structures Pub Date : 2023-08-22 DOI:10.1177/1045389x231190819
Khubab Ahmed, Peng Yan, Zhiming Zhang
{"title":"基于神经网络优化搜索空间的压电驱动纳米工作台动态跟踪预测控制","authors":"Khubab Ahmed, Peng Yan, Zhiming Zhang","doi":"10.1177/1045389x231190819","DOIUrl":null,"url":null,"abstract":"This paper presents an intelligent modified predictive control approach with squeezed search space, for tracking control of piezo-actuated nano stage. The model obtained from the gray box neural network is first dynamically linearized to avoid calculation of inverse hysteresis model. The optimum control values of the previous control cycle are used to construct a squeezed search space, which reduces the computation burden and improves the tracking control performance. The effectiveness of the proposed scheme is verified theoretically by deriving a convergence analysis and by experimental results. The results show that the proposed approach significantly improves the dynamic tracking performance for high-frequency reference signals than existing results in the literature.","PeriodicalId":16121,"journal":{"name":"Journal of Intelligent Material Systems and Structures","volume":"1 1","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2023-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Neural network based predictive control with optimized search space for dynamic tracking of a piezo-actuated nano stage\",\"authors\":\"Khubab Ahmed, Peng Yan, Zhiming Zhang\",\"doi\":\"10.1177/1045389x231190819\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents an intelligent modified predictive control approach with squeezed search space, for tracking control of piezo-actuated nano stage. The model obtained from the gray box neural network is first dynamically linearized to avoid calculation of inverse hysteresis model. The optimum control values of the previous control cycle are used to construct a squeezed search space, which reduces the computation burden and improves the tracking control performance. The effectiveness of the proposed scheme is verified theoretically by deriving a convergence analysis and by experimental results. The results show that the proposed approach significantly improves the dynamic tracking performance for high-frequency reference signals than existing results in the literature.\",\"PeriodicalId\":16121,\"journal\":{\"name\":\"Journal of Intelligent Material Systems and Structures\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2023-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Intelligent Material Systems and Structures\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1177/1045389x231190819\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Intelligent Material Systems and Structures","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1177/1045389x231190819","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

针对压电驱动纳米工作台的跟踪控制问题,提出了一种压缩搜索空间的智能修正预测控制方法。首先对灰盒神经网络得到的模型进行动态线性化处理,避免了逆滞回模型的计算。利用前一个控制周期的最优控制值构造压缩搜索空间,减少了计算量,提高了跟踪控制性能。通过收敛性分析和实验结果,从理论上验证了该方案的有效性。结果表明,与已有的文献结果相比,该方法显著提高了高频参考信号的动态跟踪性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Neural network based predictive control with optimized search space for dynamic tracking of a piezo-actuated nano stage
This paper presents an intelligent modified predictive control approach with squeezed search space, for tracking control of piezo-actuated nano stage. The model obtained from the gray box neural network is first dynamically linearized to avoid calculation of inverse hysteresis model. The optimum control values of the previous control cycle are used to construct a squeezed search space, which reduces the computation burden and improves the tracking control performance. The effectiveness of the proposed scheme is verified theoretically by deriving a convergence analysis and by experimental results. The results show that the proposed approach significantly improves the dynamic tracking performance for high-frequency reference signals than existing results in the literature.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Intelligent Material Systems and Structures
Journal of Intelligent Material Systems and Structures 工程技术-材料科学:综合
CiteScore
5.40
自引率
11.10%
发文量
126
审稿时长
4.7 months
期刊介绍: The Journal of Intelligent Materials Systems and Structures is an international peer-reviewed journal that publishes the highest quality original research reporting the results of experimental or theoretical work on any aspect of intelligent materials systems and/or structures research also called smart structure, smart materials, active materials, adaptive structures and adaptive materials.
期刊最新文献
A modified parametric model to predict visco-elastic properties of magneto-rheological elastomers at non-LVE region Simultaneous position and force control of a SMA-actuated continuum robotic module A facile method to fabricate auxetic polymer foams A low-frequency multidirectional piezoelectric vibration energy harvester using a universal joint structure Development of a fail-safe magnetorheological fluid device using electro and permanent magnets
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1