用手持式离子迁移谱仪检测空气中的异氰酸甲酯

Charles S. Harden, Donald B. Shoff
{"title":"用手持式离子迁移谱仪检测空气中的异氰酸甲酯","authors":"Charles S. Harden,&nbsp;Donald B. Shoff","doi":"10.1002/(SICI)1520-6521(1997)1:5<285::AID-FACT4>3.0.CO;2-T","DOIUrl":null,"url":null,"abstract":"<p>Methyl isocyanate (MIC), CH<sub>3</sub>NCO, is a relatively simple molecule, but ion mobility spectra derived from studies of this molecule are complex. MIC is known to polymerize, which would lead one to expect that proton-bound monomer, proton-bound dimer, and even larger proton-bound ions could be observed. Indeed, this is the case, and a number of other species can also be observed. In this case headspace above a relatively fresh (i.e., recently purchased) MIC sample was analyzed, and numerous peaks were observed in a single spectrum. Peak identities and intensities were, of course, concentration dependent. Over a range of concentrations, as many as 16 peaks were observed. IMS systems used for these studies included chemical agent monitors (both water and acetone chemistry), a miniaturized hand-held IMS device (Mini-IMS) and an IMS-MS/MS instrument. Although ion mobility spectra are complex, it has been shown that hand-held IMS devices can be useful for detecting or monitoring \nairborne concentrations of this toxic and hazardous compound. IMS/MS/MS experimentation yielded some mass identifications, and possible ion compositions are proposed. Reduced ion mobility of H<sup>+</sup>(CH<sub>3</sub>NCO)(H<sub>2</sub>O)<sub>n</sub> was tentatively determined to be 1.91±0.02 cm<sub>2</sub> / V s. © 1997 John Wiley &amp; Sons, Inc. Field Analyt Chem Technol 1: 285–294, 1997</p>","PeriodicalId":100527,"journal":{"name":"Field Analytical Chemistry & Technology","volume":"1 5","pages":"285-294"},"PeriodicalIF":0.0000,"publicationDate":"1998-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/(SICI)1520-6521(1997)1:5<285::AID-FACT4>3.0.CO;2-T","citationCount":"9","resultStr":"{\"title\":\"Detection of methyl isocyanate in air with the use of hand-held ion mobility spectrometers\",\"authors\":\"Charles S. Harden,&nbsp;Donald B. Shoff\",\"doi\":\"10.1002/(SICI)1520-6521(1997)1:5<285::AID-FACT4>3.0.CO;2-T\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Methyl isocyanate (MIC), CH<sub>3</sub>NCO, is a relatively simple molecule, but ion mobility spectra derived from studies of this molecule are complex. MIC is known to polymerize, which would lead one to expect that proton-bound monomer, proton-bound dimer, and even larger proton-bound ions could be observed. Indeed, this is the case, and a number of other species can also be observed. In this case headspace above a relatively fresh (i.e., recently purchased) MIC sample was analyzed, and numerous peaks were observed in a single spectrum. Peak identities and intensities were, of course, concentration dependent. Over a range of concentrations, as many as 16 peaks were observed. IMS systems used for these studies included chemical agent monitors (both water and acetone chemistry), a miniaturized hand-held IMS device (Mini-IMS) and an IMS-MS/MS instrument. Although ion mobility spectra are complex, it has been shown that hand-held IMS devices can be useful for detecting or monitoring \\nairborne concentrations of this toxic and hazardous compound. IMS/MS/MS experimentation yielded some mass identifications, and possible ion compositions are proposed. Reduced ion mobility of H<sup>+</sup>(CH<sub>3</sub>NCO)(H<sub>2</sub>O)<sub>n</sub> was tentatively determined to be 1.91±0.02 cm<sub>2</sub> / V s. © 1997 John Wiley &amp; Sons, Inc. Field Analyt Chem Technol 1: 285–294, 1997</p>\",\"PeriodicalId\":100527,\"journal\":{\"name\":\"Field Analytical Chemistry & Technology\",\"volume\":\"1 5\",\"pages\":\"285-294\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1998-12-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1002/(SICI)1520-6521(1997)1:5<285::AID-FACT4>3.0.CO;2-T\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Field Analytical Chemistry & Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/%28SICI%291520-6521%281997%291%3A5%3C285%3A%3AAID-FACT4%3E3.0.CO%3B2-T\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Field Analytical Chemistry & Technology","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/%28SICI%291520-6521%281997%291%3A5%3C285%3A%3AAID-FACT4%3E3.0.CO%3B2-T","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

甲基异氰酸酯(MIC), CH3NCO,是一个相对简单的分子,但从该分子的研究中得到的离子迁移谱是复杂的。已知MIC具有聚合性,这将导致人们期望可以观察到质子结合单体,质子结合二聚体,甚至更大的质子结合离子。的确,情况就是这样,而且还可以观察到许多其他物种。在这种情况下,分析了相对新鲜(即最近购买的)MIC样品上方的顶部空间,并在单个光谱中观察到许多峰。当然,峰的身份和强度与浓度有关。在一系列浓度范围内,观察到多达16个峰值。用于这些研究的IMS系统包括化学剂监测仪(水和丙酮化学)、小型手持式IMS设备(Mini-IMS)和IMS-MS/MS仪器。虽然离子迁移谱很复杂,但已经证明,手持IMS设备可用于检测或监测空气中这种有毒有害化合物的浓度。IMS/MS/MS实验得到了一些质量鉴定,并提出了可能的离子组成。H+(CH3NCO)(H2O)n的还原离子迁移率暂定为1.91±0.02 cm2 / V s©1997 John Wiley &儿子,Inc。化学工程学报(英文版),1997
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Detection of methyl isocyanate in air with the use of hand-held ion mobility spectrometers

Methyl isocyanate (MIC), CH3NCO, is a relatively simple molecule, but ion mobility spectra derived from studies of this molecule are complex. MIC is known to polymerize, which would lead one to expect that proton-bound monomer, proton-bound dimer, and even larger proton-bound ions could be observed. Indeed, this is the case, and a number of other species can also be observed. In this case headspace above a relatively fresh (i.e., recently purchased) MIC sample was analyzed, and numerous peaks were observed in a single spectrum. Peak identities and intensities were, of course, concentration dependent. Over a range of concentrations, as many as 16 peaks were observed. IMS systems used for these studies included chemical agent monitors (both water and acetone chemistry), a miniaturized hand-held IMS device (Mini-IMS) and an IMS-MS/MS instrument. Although ion mobility spectra are complex, it has been shown that hand-held IMS devices can be useful for detecting or monitoring airborne concentrations of this toxic and hazardous compound. IMS/MS/MS experimentation yielded some mass identifications, and possible ion compositions are proposed. Reduced ion mobility of H+(CH3NCO)(H2O)n was tentatively determined to be 1.91±0.02 cm2 / V s. © 1997 John Wiley & Sons, Inc. Field Analyt Chem Technol 1: 285–294, 1997

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Technological innovation in field analytical chemistry A compact optical system for multi-determination of biochemical oxygen demand using disposable strips On-site gas chromatographic determination of explosives in soils Real-time classification performance and failure mode analysis of a physical/chemical sensor array and a probabilistic neural network Minicolumn field sampling and flow-injection-atomic absorption spectrometric determination of lead in seawater
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1