F. Cattaneo, K. Baldwin, Shu Yang, T. Krupenkine, S. Ramachandran, J. Rogers
{"title":"数字可调微流控光纤器件","authors":"F. Cattaneo, K. Baldwin, Shu Yang, T. Krupenkine, S. Ramachandran, J. Rogers","doi":"10.1109/JMEMS.2003.820285","DOIUrl":null,"url":null,"abstract":"This communication introduces a digital design for tunable microfluidic optical fiber devices. In these systems, multiple, independently controlled microfluidic plugs are pumped into or out of overlap with a fiber structure to modulate its transmission characteristics. The devices described here use eight plugs, eight electrowetting pumps and a corresponding set of molded planar recirculating microchannels to control the depth of the narrowband loss feature associated with a long period fiber grating. Optical measurements illustrate the digital and relatively fast operation of this type of microfluidic fiber device.","PeriodicalId":13438,"journal":{"name":"IEEE\\/ASME Journal of Microelectromechanical Systems","volume":"30 1","pages":"907-912"},"PeriodicalIF":0.0000,"publicationDate":"2003-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"40","resultStr":"{\"title\":\"Digitally tunable microfluidic optical fiber devices\",\"authors\":\"F. Cattaneo, K. Baldwin, Shu Yang, T. Krupenkine, S. Ramachandran, J. Rogers\",\"doi\":\"10.1109/JMEMS.2003.820285\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This communication introduces a digital design for tunable microfluidic optical fiber devices. In these systems, multiple, independently controlled microfluidic plugs are pumped into or out of overlap with a fiber structure to modulate its transmission characteristics. The devices described here use eight plugs, eight electrowetting pumps and a corresponding set of molded planar recirculating microchannels to control the depth of the narrowband loss feature associated with a long period fiber grating. Optical measurements illustrate the digital and relatively fast operation of this type of microfluidic fiber device.\",\"PeriodicalId\":13438,\"journal\":{\"name\":\"IEEE\\\\/ASME Journal of Microelectromechanical Systems\",\"volume\":\"30 1\",\"pages\":\"907-912\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"40\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE\\\\/ASME Journal of Microelectromechanical Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/JMEMS.2003.820285\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE\\/ASME Journal of Microelectromechanical Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/JMEMS.2003.820285","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
This communication introduces a digital design for tunable microfluidic optical fiber devices. In these systems, multiple, independently controlled microfluidic plugs are pumped into or out of overlap with a fiber structure to modulate its transmission characteristics. The devices described here use eight plugs, eight electrowetting pumps and a corresponding set of molded planar recirculating microchannels to control the depth of the narrowband loss feature associated with a long period fiber grating. Optical measurements illustrate the digital and relatively fast operation of this type of microfluidic fiber device.