生物力学顺应性对磁流变滑动座系统控制性能的影响

IF 2.4 3区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Journal of Intelligent Material Systems and Structures Pub Date : 2023-04-11 DOI:10.1177/1045389X231164516
Minquan Mao, Young T. Choi, Norman M. Wereley, A. Browne, N. Johnson
{"title":"生物力学顺应性对磁流变滑动座系统控制性能的影响","authors":"Minquan Mao, Young T. Choi, Norman M. Wereley, A. Browne, N. Johnson","doi":"10.1177/1045389X231164516","DOIUrl":null,"url":null,"abstract":"We investigate the feasibility of a sliding seat with a magnetorheological (MR) energy absorber (MREA) to minimize loads transmitted to a payload in a ground vehicle for frontal impact speeds ranging as high as 7 m/s (15.7 mph). The crash pulse for a given impact speed was assumed to be a rectangular deceleration pulse having a prescribed magnitude and duration. The control objective is to bring the seat system to rest using the available stroke, while accommodating changes in impact velocity and occupant mass ranging from a 5th percentile female to a 95th percentile male. The seat system was first treated as a single-degree-of-freedom (SDOF) rigid occupant (RO) model, and two control algorithms are developed: (1) constant Bingham number control and (2) constant force control. To explore the effects of occupant compliance on the adaptive seat system performance, a multi-degree-of-freedom (MDOF) compliant occupant (CO) model was integrated with the seat mass and the same control algorithms were used. Simulation results showed that the designed adaptive controllers successfully controlled load-stroke profiles to bring the seat system to rest in the available stroke and reduced occupant decelerations. Analysis showed extensive coupling between the seat structures and occupant biodynamic response.","PeriodicalId":16121,"journal":{"name":"Journal of Intelligent Material Systems and Structures","volume":"5 1","pages":"1983 - 1997"},"PeriodicalIF":2.4000,"publicationDate":"2023-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Influence of biomechanical compliance on control performance of a magnetorheological sliding seat system\",\"authors\":\"Minquan Mao, Young T. Choi, Norman M. Wereley, A. Browne, N. Johnson\",\"doi\":\"10.1177/1045389X231164516\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We investigate the feasibility of a sliding seat with a magnetorheological (MR) energy absorber (MREA) to minimize loads transmitted to a payload in a ground vehicle for frontal impact speeds ranging as high as 7 m/s (15.7 mph). The crash pulse for a given impact speed was assumed to be a rectangular deceleration pulse having a prescribed magnitude and duration. The control objective is to bring the seat system to rest using the available stroke, while accommodating changes in impact velocity and occupant mass ranging from a 5th percentile female to a 95th percentile male. The seat system was first treated as a single-degree-of-freedom (SDOF) rigid occupant (RO) model, and two control algorithms are developed: (1) constant Bingham number control and (2) constant force control. To explore the effects of occupant compliance on the adaptive seat system performance, a multi-degree-of-freedom (MDOF) compliant occupant (CO) model was integrated with the seat mass and the same control algorithms were used. Simulation results showed that the designed adaptive controllers successfully controlled load-stroke profiles to bring the seat system to rest in the available stroke and reduced occupant decelerations. Analysis showed extensive coupling between the seat structures and occupant biodynamic response.\",\"PeriodicalId\":16121,\"journal\":{\"name\":\"Journal of Intelligent Material Systems and Structures\",\"volume\":\"5 1\",\"pages\":\"1983 - 1997\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2023-04-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Intelligent Material Systems and Structures\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1177/1045389X231164516\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Intelligent Material Systems and Structures","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1177/1045389X231164516","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了一种带有磁流变(MR)能量吸收器(MREA)的滑动座椅的可行性,以最大限度地减少在正面碰撞速度高达7米/秒(15.7英里/小时)的情况下传递给地面车辆有效载荷的载荷。假定在给定的冲击速度下,碰撞脉冲为具有规定幅度和持续时间的矩形减速脉冲。控制目标是利用可用的冲程使座椅系统休息,同时适应撞击速度和乘客质量的变化,从第5百分位女性到第95百分位男性。首先将座椅系统视为单自由度刚性乘员(RO)模型,并提出了两种控制算法:(1)恒Bingham数控制和(2)恒力控制。为了探索乘员柔顺性对自适应座椅系统性能的影响,将乘员多自由度柔顺性模型与座椅质量相结合,采用相同的控制算法。仿真结果表明,所设计的自适应控制器成功地控制了载荷-行程曲线,使座椅系统在有效行程内静止,降低了乘员的减速速度。分析表明,座椅结构与乘员生物动力学响应之间存在广泛的耦合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Influence of biomechanical compliance on control performance of a magnetorheological sliding seat system
We investigate the feasibility of a sliding seat with a magnetorheological (MR) energy absorber (MREA) to minimize loads transmitted to a payload in a ground vehicle for frontal impact speeds ranging as high as 7 m/s (15.7 mph). The crash pulse for a given impact speed was assumed to be a rectangular deceleration pulse having a prescribed magnitude and duration. The control objective is to bring the seat system to rest using the available stroke, while accommodating changes in impact velocity and occupant mass ranging from a 5th percentile female to a 95th percentile male. The seat system was first treated as a single-degree-of-freedom (SDOF) rigid occupant (RO) model, and two control algorithms are developed: (1) constant Bingham number control and (2) constant force control. To explore the effects of occupant compliance on the adaptive seat system performance, a multi-degree-of-freedom (MDOF) compliant occupant (CO) model was integrated with the seat mass and the same control algorithms were used. Simulation results showed that the designed adaptive controllers successfully controlled load-stroke profiles to bring the seat system to rest in the available stroke and reduced occupant decelerations. Analysis showed extensive coupling between the seat structures and occupant biodynamic response.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Intelligent Material Systems and Structures
Journal of Intelligent Material Systems and Structures 工程技术-材料科学:综合
CiteScore
5.40
自引率
11.10%
发文量
126
审稿时长
4.7 months
期刊介绍: The Journal of Intelligent Materials Systems and Structures is an international peer-reviewed journal that publishes the highest quality original research reporting the results of experimental or theoretical work on any aspect of intelligent materials systems and/or structures research also called smart structure, smart materials, active materials, adaptive structures and adaptive materials.
期刊最新文献
A modified parametric model to predict visco-elastic properties of magneto-rheological elastomers at non-LVE region Simultaneous position and force control of a SMA-actuated continuum robotic module A facile method to fabricate auxetic polymer foams A low-frequency multidirectional piezoelectric vibration energy harvester using a universal joint structure Development of a fail-safe magnetorheological fluid device using electro and permanent magnets
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1