使用人工神经网络插入测试点

Yang Sun, S. Millican
{"title":"使用人工神经网络插入测试点","authors":"Yang Sun, S. Millican","doi":"10.1109/ISVLSI.2019.00054","DOIUrl":null,"url":null,"abstract":"A method of data collecting, training, and using artificial neural networks (ANNs) for evaluating test point (TP) quality for TP insertion (TPI) is presented in this study. The TPI method analyzes a digital circuit and determines where to insert TPs to improve fault coverage under pseudo-random stimulus, but in contrast to conventional TPI algorithms using heuristically-calculated testability measures, the proposed method uses an ANN trained through fault simulation to evaluate a TP's quality. The time of feature extraction is demonstrated to be significantly faster compared to heuristic-based TP evaluation, and the impact of inserted TPs is shown to provide superior stuck-at fault coverage compared to conventional heuristic-based testability analysis.","PeriodicalId":6703,"journal":{"name":"2019 IEEE Computer Society Annual Symposium on VLSI (ISVLSI)","volume":"31 1","pages":"253-258"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"Test Point Insertion Using Artificial Neural Networks\",\"authors\":\"Yang Sun, S. Millican\",\"doi\":\"10.1109/ISVLSI.2019.00054\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A method of data collecting, training, and using artificial neural networks (ANNs) for evaluating test point (TP) quality for TP insertion (TPI) is presented in this study. The TPI method analyzes a digital circuit and determines where to insert TPs to improve fault coverage under pseudo-random stimulus, but in contrast to conventional TPI algorithms using heuristically-calculated testability measures, the proposed method uses an ANN trained through fault simulation to evaluate a TP's quality. The time of feature extraction is demonstrated to be significantly faster compared to heuristic-based TP evaluation, and the impact of inserted TPs is shown to provide superior stuck-at fault coverage compared to conventional heuristic-based testability analysis.\",\"PeriodicalId\":6703,\"journal\":{\"name\":\"2019 IEEE Computer Society Annual Symposium on VLSI (ISVLSI)\",\"volume\":\"31 1\",\"pages\":\"253-258\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE Computer Society Annual Symposium on VLSI (ISVLSI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISVLSI.2019.00054\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Computer Society Annual Symposium on VLSI (ISVLSI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISVLSI.2019.00054","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

摘要

本文提出了一种数据收集、训练和使用人工神经网络(ann)来评估TP插入(TPI)测试点(TP)质量的方法。TPI方法分析数字电路并确定在何处插入TPI以提高伪随机刺激下的故障覆盖率,但与传统的TPI算法使用启发式计算的可测试性度量不同,该方法使用经过故障模拟训练的神经网络来评估TP的质量。与启发式TP评估相比,特征提取的时间明显更快,插入TP的影响与传统的基于启发式的可测试性分析相比,提供了更好的卡在故障覆盖率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Test Point Insertion Using Artificial Neural Networks
A method of data collecting, training, and using artificial neural networks (ANNs) for evaluating test point (TP) quality for TP insertion (TPI) is presented in this study. The TPI method analyzes a digital circuit and determines where to insert TPs to improve fault coverage under pseudo-random stimulus, but in contrast to conventional TPI algorithms using heuristically-calculated testability measures, the proposed method uses an ANN trained through fault simulation to evaluate a TP's quality. The time of feature extraction is demonstrated to be significantly faster compared to heuristic-based TP evaluation, and the impact of inserted TPs is shown to provide superior stuck-at fault coverage compared to conventional heuristic-based testability analysis.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Ferroelectric FET Based TCAM Designs for Energy Efficient Computing Evaluation of Compilers Effects on OpenMP Soft Error Resiliency Towards Efficient Compact Network Training on Edge-Devices PageCmp: Bandwidth Efficient Page Deduplication through In-memory Page Comparison Improving Logic Optimization in Sequential Circuits using Majority-inverter Graphs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1