Chien-Cheng Wei, Chin-Ta Fan, Ta-Hsiang Chiang, Ming-Kuen Chiu, S. Ru
{"title":"直接镀铜金属化衬底的高频特性及其在微波电路中的应用","authors":"Chien-Cheng Wei, Chin-Ta Fan, Ta-Hsiang Chiang, Ming-Kuen Chiu, S. Ru","doi":"10.1109/IMPACT.2009.5382279","DOIUrl":null,"url":null,"abstract":"Direct plated copper (DPC) metallized substrate is introduced, characterized, and demonstrated in this paper. The proposed DPC metallized substrate has the main advantages of high-frequency characteristics and excellent thermal management, due to the use of ceramic substrate and metallized copper conductor. Besides, the DPC process also provides high circuit density, fine pitch, and low cost potential compared to other technologies, like direct bonded copper (DBC), Low-Temperature Cofired Ceramics (LTCC), and High-Temperature Cofired Ceramics (HTCC) processes. Therefore, to characterize the electrical properties of DPC substrate for high-frequency applications, a simple extraction method was adopted to carry out the correlated values of dielectric constant and dielectric loss at Ku-band. However, to validate the extracted parameters, a 10-GHz parallel-coupled line band-pass filter (BPF) was demonstrated by using the presented DPC substrate. This BPF has measured insertion loss of only 0.5dB and return loss of above 10dB in the passband. It obviously proved that the DPC metallized substrate is very capable for RF module packages and microwave components, with its excellent low loss performance.","PeriodicalId":6410,"journal":{"name":"2009 4th International Microsystems, Packaging, Assembly and Circuits Technology Conference","volume":"2 1","pages":"681-684"},"PeriodicalIF":0.0000,"publicationDate":"2009-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"High-frequency characterization of direct plated copper metallized substrate and its application on microwave circuit\",\"authors\":\"Chien-Cheng Wei, Chin-Ta Fan, Ta-Hsiang Chiang, Ming-Kuen Chiu, S. Ru\",\"doi\":\"10.1109/IMPACT.2009.5382279\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Direct plated copper (DPC) metallized substrate is introduced, characterized, and demonstrated in this paper. The proposed DPC metallized substrate has the main advantages of high-frequency characteristics and excellent thermal management, due to the use of ceramic substrate and metallized copper conductor. Besides, the DPC process also provides high circuit density, fine pitch, and low cost potential compared to other technologies, like direct bonded copper (DBC), Low-Temperature Cofired Ceramics (LTCC), and High-Temperature Cofired Ceramics (HTCC) processes. Therefore, to characterize the electrical properties of DPC substrate for high-frequency applications, a simple extraction method was adopted to carry out the correlated values of dielectric constant and dielectric loss at Ku-band. However, to validate the extracted parameters, a 10-GHz parallel-coupled line band-pass filter (BPF) was demonstrated by using the presented DPC substrate. This BPF has measured insertion loss of only 0.5dB and return loss of above 10dB in the passband. It obviously proved that the DPC metallized substrate is very capable for RF module packages and microwave components, with its excellent low loss performance.\",\"PeriodicalId\":6410,\"journal\":{\"name\":\"2009 4th International Microsystems, Packaging, Assembly and Circuits Technology Conference\",\"volume\":\"2 1\",\"pages\":\"681-684\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 4th International Microsystems, Packaging, Assembly and Circuits Technology Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IMPACT.2009.5382279\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 4th International Microsystems, Packaging, Assembly and Circuits Technology Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IMPACT.2009.5382279","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
High-frequency characterization of direct plated copper metallized substrate and its application on microwave circuit
Direct plated copper (DPC) metallized substrate is introduced, characterized, and demonstrated in this paper. The proposed DPC metallized substrate has the main advantages of high-frequency characteristics and excellent thermal management, due to the use of ceramic substrate and metallized copper conductor. Besides, the DPC process also provides high circuit density, fine pitch, and low cost potential compared to other technologies, like direct bonded copper (DBC), Low-Temperature Cofired Ceramics (LTCC), and High-Temperature Cofired Ceramics (HTCC) processes. Therefore, to characterize the electrical properties of DPC substrate for high-frequency applications, a simple extraction method was adopted to carry out the correlated values of dielectric constant and dielectric loss at Ku-band. However, to validate the extracted parameters, a 10-GHz parallel-coupled line band-pass filter (BPF) was demonstrated by using the presented DPC substrate. This BPF has measured insertion loss of only 0.5dB and return loss of above 10dB in the passband. It obviously proved that the DPC metallized substrate is very capable for RF module packages and microwave components, with its excellent low loss performance.