Sajid Farooq, Daniella Lúmara Peres, D. C. Caixeta, Cassio Lima, Robinson Sabino Da Silva, D. Zezell
{"title":"利用ATR-FTIR和机器学习监测糖尿病大鼠尿液变化","authors":"Sajid Farooq, Daniella Lúmara Peres, D. C. Caixeta, Cassio Lima, Robinson Sabino Da Silva, D. Zezell","doi":"10.1109/OMN/SBFotonIOPC58971.2023.10230957","DOIUrl":null,"url":null,"abstract":"Here, we aim to better characterize diabetes mellitus (DM) by analyzing 149 urine spectral samples, comprising of diabetes versus healthy control groups employing ATR-FTIR spectroscopy, combined with a 3D discriminant analysis machine learning approach. Our results depict that the model is highly precise with accuracy close to 100%.","PeriodicalId":31141,"journal":{"name":"Netcom","volume":"16 1","pages":"1-2"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Monitoring Changes in Urine from Diabetic Rats Using ATR-FTIR and Machine Learning\",\"authors\":\"Sajid Farooq, Daniella Lúmara Peres, D. C. Caixeta, Cassio Lima, Robinson Sabino Da Silva, D. Zezell\",\"doi\":\"10.1109/OMN/SBFotonIOPC58971.2023.10230957\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Here, we aim to better characterize diabetes mellitus (DM) by analyzing 149 urine spectral samples, comprising of diabetes versus healthy control groups employing ATR-FTIR spectroscopy, combined with a 3D discriminant analysis machine learning approach. Our results depict that the model is highly precise with accuracy close to 100%.\",\"PeriodicalId\":31141,\"journal\":{\"name\":\"Netcom\",\"volume\":\"16 1\",\"pages\":\"1-2\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Netcom\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/OMN/SBFotonIOPC58971.2023.10230957\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Netcom","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/OMN/SBFotonIOPC58971.2023.10230957","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Monitoring Changes in Urine from Diabetic Rats Using ATR-FTIR and Machine Learning
Here, we aim to better characterize diabetes mellitus (DM) by analyzing 149 urine spectral samples, comprising of diabetes versus healthy control groups employing ATR-FTIR spectroscopy, combined with a 3D discriminant analysis machine learning approach. Our results depict that the model is highly precise with accuracy close to 100%.