利用ATR-FTIR和机器学习监测糖尿病大鼠尿液变化

Sajid Farooq, Daniella Lúmara Peres, D. C. Caixeta, Cassio Lima, Robinson Sabino Da Silva, D. Zezell
{"title":"利用ATR-FTIR和机器学习监测糖尿病大鼠尿液变化","authors":"Sajid Farooq, Daniella Lúmara Peres, D. C. Caixeta, Cassio Lima, Robinson Sabino Da Silva, D. Zezell","doi":"10.1109/OMN/SBFotonIOPC58971.2023.10230957","DOIUrl":null,"url":null,"abstract":"Here, we aim to better characterize diabetes mellitus (DM) by analyzing 149 urine spectral samples, comprising of diabetes versus healthy control groups employing ATR-FTIR spectroscopy, combined with a 3D discriminant analysis machine learning approach. Our results depict that the model is highly precise with accuracy close to 100%.","PeriodicalId":31141,"journal":{"name":"Netcom","volume":"16 1","pages":"1-2"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Monitoring Changes in Urine from Diabetic Rats Using ATR-FTIR and Machine Learning\",\"authors\":\"Sajid Farooq, Daniella Lúmara Peres, D. C. Caixeta, Cassio Lima, Robinson Sabino Da Silva, D. Zezell\",\"doi\":\"10.1109/OMN/SBFotonIOPC58971.2023.10230957\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Here, we aim to better characterize diabetes mellitus (DM) by analyzing 149 urine spectral samples, comprising of diabetes versus healthy control groups employing ATR-FTIR spectroscopy, combined with a 3D discriminant analysis machine learning approach. Our results depict that the model is highly precise with accuracy close to 100%.\",\"PeriodicalId\":31141,\"journal\":{\"name\":\"Netcom\",\"volume\":\"16 1\",\"pages\":\"1-2\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Netcom\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/OMN/SBFotonIOPC58971.2023.10230957\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Netcom","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/OMN/SBFotonIOPC58971.2023.10230957","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在这里,我们的目标是通过使用ATR-FTIR光谱结合3D判别分析机器学习方法,分析149份尿液光谱样本,包括糖尿病和健康对照组,以更好地表征糖尿病(DM)。结果表明,该模型具有较高的精度,精度接近100%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Monitoring Changes in Urine from Diabetic Rats Using ATR-FTIR and Machine Learning
Here, we aim to better characterize diabetes mellitus (DM) by analyzing 149 urine spectral samples, comprising of diabetes versus healthy control groups employing ATR-FTIR spectroscopy, combined with a 3D discriminant analysis machine learning approach. Our results depict that the model is highly precise with accuracy close to 100%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
18 weeks
期刊最新文献
Current Instabilities in Vacuum Electron Devices and Semiconductor Avalanche Diodes for Generation of THz Oscillations Low-cost fabrication of an on-chip Fabry-Perot interferometer for dry environmental monitoring An H2S Gas Sensor Based on Long Period Gratings-Mach Zehnder Interferometer Light-Sheets Composed of Bessel Beams for Three-Dimensional Holography and Imaging Comparison of Scalar and Vector Vortex Beams for Turbulence-Immune Applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1