{"title":"用彩色Petri网建立木薯食品加工计算模型","authors":"Samuel M. Alade, O. D. Ninan","doi":"10.5815/ijisa.2023.01.05","DOIUrl":null,"url":null,"abstract":"A food system is composed of a complex network of activities and processes for production, distribution, transportation and consumption, which interact with each other, thus leading to changeable behaviour. Most existing empirical studies on cassava processing have focused on the technical efficiency analysis of the cassava crop processing techniques among processors indicating that the modelling of the events and operations involved in the processing of the cassava crop is highly limited. In this context, different strategies have been used to solve difficult environmental and agro-informatic systems model-based problems such as system dynamics, agent based, rule-based knowledge and mathematical modeling. However, the structural comprehension and behavioral investigation of this modeling are constrained. In this regard, formal computational modeling is a method that enables modeling and simulation of the dynamical characteristics of these food systems to be examined. In this study, the system specification is designed using Unified Modelling language (UML) to show the structural process and system design modelled and simulated using Coloured Petri Net (CPN), a formal method for analyzing the behavioural properties of complex system because of its efficient analysis. For the purpose of observing and analyzing the behaviour of the cassava food process, a series of simulation runs was proposed.","PeriodicalId":14067,"journal":{"name":"International Journal of Intelligent Systems and Applications in Engineering","volume":"13 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Development of a Computational Model for Cassava Food Processing Using Coloured Petri Net\",\"authors\":\"Samuel M. Alade, O. D. Ninan\",\"doi\":\"10.5815/ijisa.2023.01.05\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A food system is composed of a complex network of activities and processes for production, distribution, transportation and consumption, which interact with each other, thus leading to changeable behaviour. Most existing empirical studies on cassava processing have focused on the technical efficiency analysis of the cassava crop processing techniques among processors indicating that the modelling of the events and operations involved in the processing of the cassava crop is highly limited. In this context, different strategies have been used to solve difficult environmental and agro-informatic systems model-based problems such as system dynamics, agent based, rule-based knowledge and mathematical modeling. However, the structural comprehension and behavioral investigation of this modeling are constrained. In this regard, formal computational modeling is a method that enables modeling and simulation of the dynamical characteristics of these food systems to be examined. In this study, the system specification is designed using Unified Modelling language (UML) to show the structural process and system design modelled and simulated using Coloured Petri Net (CPN), a formal method for analyzing the behavioural properties of complex system because of its efficient analysis. For the purpose of observing and analyzing the behaviour of the cassava food process, a series of simulation runs was proposed.\",\"PeriodicalId\":14067,\"journal\":{\"name\":\"International Journal of Intelligent Systems and Applications in Engineering\",\"volume\":\"13 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-02-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Intelligent Systems and Applications in Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5815/ijisa.2023.01.05\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Intelligent Systems and Applications in Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5815/ijisa.2023.01.05","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Computer Science","Score":null,"Total":0}
Development of a Computational Model for Cassava Food Processing Using Coloured Petri Net
A food system is composed of a complex network of activities and processes for production, distribution, transportation and consumption, which interact with each other, thus leading to changeable behaviour. Most existing empirical studies on cassava processing have focused on the technical efficiency analysis of the cassava crop processing techniques among processors indicating that the modelling of the events and operations involved in the processing of the cassava crop is highly limited. In this context, different strategies have been used to solve difficult environmental and agro-informatic systems model-based problems such as system dynamics, agent based, rule-based knowledge and mathematical modeling. However, the structural comprehension and behavioral investigation of this modeling are constrained. In this regard, formal computational modeling is a method that enables modeling and simulation of the dynamical characteristics of these food systems to be examined. In this study, the system specification is designed using Unified Modelling language (UML) to show the structural process and system design modelled and simulated using Coloured Petri Net (CPN), a formal method for analyzing the behavioural properties of complex system because of its efficient analysis. For the purpose of observing and analyzing the behaviour of the cassava food process, a series of simulation runs was proposed.