用TEM和STEM研究Sn-3.5Ag-0.5Cu钎料颗粒表面加速氧化

Xin Luo, Wenhui Du, Xiuzhen Lu, Toshikazu Yamaguchi, J. Gavin, L. Ye, Johan Liu
{"title":"用TEM和STEM研究Sn-3.5Ag-0.5Cu钎料颗粒表面加速氧化","authors":"Xin Luo, Wenhui Du, Xiuzhen Lu, Toshikazu Yamaguchi, J. Gavin, L. Ye, Johan Liu","doi":"10.1109/ISAPM.2011.6105674","DOIUrl":null,"url":null,"abstract":"The composition and thickness of surface oxide of solder particles has a direct effect on adhesion and electrical resistance of soldering joint and resultant the quality of interconnect and the reliability of packaged system. Auger electron spectroscopy (AES), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM) and scanning transmission electron microscopy (STEM) were used to examine the oxide layer on solder powders in the present paper. However, for the surface oxide layer of a lead-free solder particle, the TEM sample for the oxide layer has never been done for studying its thickness or appearance before. And it is the first time in this work to use Focus Ion Beam (FIB) technology to prepare TEM specimen for solder particles and show TEM pictures of their surface oxide layer. High angle annular dark field (HAADF) pattern was applied to distinguish between the oxide layer and the solder matrix by the contrast of average atomic number. The solder powders were exposed in air (70% relative humidity) at 150°C for 0, 120 and 240 h to simulate the accelerated growth of oxide. The surface oxide thickness was 6 nm and 50 nm measured by TEM for 0 h and 120 h samples respectively. Confirming by AES measurement, the thickness of 5 nm and 50 nm were gotten using intersection analysis method for AES depth profiles. It is found that the increase of surface oxide thickness of solder particles is proportional to the rooting of time. The elemental distribution along the oxide was quantified by line scanning using STEM and the atomic ratio of Sn to O in the oxide layer nearer to the outer, the middle, and the inner (adjacent to the solder matrix) were found to be 1:2, 2:3 and 1:1, respectively. The result was validated using XPS which gave Sn to O ratio of 1:2 at 5 nm depth of surface oxide.","PeriodicalId":6440,"journal":{"name":"2011 International Symposium on Advanced Packaging Materials (APM)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2011-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Investigation of accelerated surface oxidation of Sn-3.5Ag-0.5Cu solder particles by TEM and STEM\",\"authors\":\"Xin Luo, Wenhui Du, Xiuzhen Lu, Toshikazu Yamaguchi, J. Gavin, L. Ye, Johan Liu\",\"doi\":\"10.1109/ISAPM.2011.6105674\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The composition and thickness of surface oxide of solder particles has a direct effect on adhesion and electrical resistance of soldering joint and resultant the quality of interconnect and the reliability of packaged system. Auger electron spectroscopy (AES), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM) and scanning transmission electron microscopy (STEM) were used to examine the oxide layer on solder powders in the present paper. However, for the surface oxide layer of a lead-free solder particle, the TEM sample for the oxide layer has never been done for studying its thickness or appearance before. And it is the first time in this work to use Focus Ion Beam (FIB) technology to prepare TEM specimen for solder particles and show TEM pictures of their surface oxide layer. High angle annular dark field (HAADF) pattern was applied to distinguish between the oxide layer and the solder matrix by the contrast of average atomic number. The solder powders were exposed in air (70% relative humidity) at 150°C for 0, 120 and 240 h to simulate the accelerated growth of oxide. The surface oxide thickness was 6 nm and 50 nm measured by TEM for 0 h and 120 h samples respectively. Confirming by AES measurement, the thickness of 5 nm and 50 nm were gotten using intersection analysis method for AES depth profiles. It is found that the increase of surface oxide thickness of solder particles is proportional to the rooting of time. The elemental distribution along the oxide was quantified by line scanning using STEM and the atomic ratio of Sn to O in the oxide layer nearer to the outer, the middle, and the inner (adjacent to the solder matrix) were found to be 1:2, 2:3 and 1:1, respectively. The result was validated using XPS which gave Sn to O ratio of 1:2 at 5 nm depth of surface oxide.\",\"PeriodicalId\":6440,\"journal\":{\"name\":\"2011 International Symposium on Advanced Packaging Materials (APM)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-12-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 International Symposium on Advanced Packaging Materials (APM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISAPM.2011.6105674\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 International Symposium on Advanced Packaging Materials (APM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISAPM.2011.6105674","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

焊锡颗粒表面氧化物的组成和厚度直接影响到焊点的附着力和电阻,从而影响到互连质量和封装系统的可靠性。采用俄歇电子能谱(AES)、x射线光电子能谱(XPS)、透射电子显微镜(TEM)和扫描透射电子显微镜(STEM)对焊锡粉的氧化层进行了表征。然而,对于无铅焊料颗粒的表面氧化层,以前从未做过氧化层的TEM样品来研究其厚度或外观。本文首次利用聚焦离子束(FIB)技术制备了焊料颗粒的TEM试样,并展示了其表面氧化层的TEM图像。采用高角环形暗场(HAADF)模式,通过平均原子序数的对比来区分氧化层和焊料基体。将焊锡粉在空气中(相对湿度为70%)在150℃下暴露0、120和240 h,模拟氧化物的加速生长。透射电镜测定样品在0 h和120 h时的表面氧化厚度分别为6 nm和50 nm。通过AES深度剖面的交会分析,得到了5 nm和50 nm的厚度。结果表明,焊料颗粒表面氧化层厚度的增加与生根时间成正比。利用STEM对元素沿氧化物的分布进行了定量分析,发现靠近外侧、中部和内侧(靠近焊料基体)的氧化层中Sn与O的原子比分别为1:2、2:3和1:1。用XPS对结果进行了验证,在5 nm深度处,锡氧比为1:2。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Investigation of accelerated surface oxidation of Sn-3.5Ag-0.5Cu solder particles by TEM and STEM
The composition and thickness of surface oxide of solder particles has a direct effect on adhesion and electrical resistance of soldering joint and resultant the quality of interconnect and the reliability of packaged system. Auger electron spectroscopy (AES), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM) and scanning transmission electron microscopy (STEM) were used to examine the oxide layer on solder powders in the present paper. However, for the surface oxide layer of a lead-free solder particle, the TEM sample for the oxide layer has never been done for studying its thickness or appearance before. And it is the first time in this work to use Focus Ion Beam (FIB) technology to prepare TEM specimen for solder particles and show TEM pictures of their surface oxide layer. High angle annular dark field (HAADF) pattern was applied to distinguish between the oxide layer and the solder matrix by the contrast of average atomic number. The solder powders were exposed in air (70% relative humidity) at 150°C for 0, 120 and 240 h to simulate the accelerated growth of oxide. The surface oxide thickness was 6 nm and 50 nm measured by TEM for 0 h and 120 h samples respectively. Confirming by AES measurement, the thickness of 5 nm and 50 nm were gotten using intersection analysis method for AES depth profiles. It is found that the increase of surface oxide thickness of solder particles is proportional to the rooting of time. The elemental distribution along the oxide was quantified by line scanning using STEM and the atomic ratio of Sn to O in the oxide layer nearer to the outer, the middle, and the inner (adjacent to the solder matrix) were found to be 1:2, 2:3 and 1:1, respectively. The result was validated using XPS which gave Sn to O ratio of 1:2 at 5 nm depth of surface oxide.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Investigation of BGA crack issue in normal production line Characterization of Al/Cu/W bond pad micro-corrosion Magneto-electric effect of KNN-Ni composites Effect of hygro-thermo-mechanical stress on reliability of stacked die package A study of solder joint degradation and detection using RF impedance analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1