{"title":"SiO2/4H-SiC MOS界面无序的电学证据及其对电子传递的影响","authors":"S. Swandono, A. Penumatcha, J. Cooper","doi":"10.1109/DRC.2012.6257045","DOIUrl":null,"url":null,"abstract":"Silicon carbide Schottky diodes have been in commercial production since 2002, their use has saved about $2B in energy and prevented about 10M tons of CO2 from being released into the atmosphere worldwide, equivalent to taking 1.7M automobiles off the roads. Recently, SiC power DMOSFETs entered commercial production, ushering in a new era of opportunity for wide bandgap power electronics. Going forward, high-voltage SiC MOSFETs and IGBTs hold the key to more efficient energy utilization and renewable energy production.","PeriodicalId":6808,"journal":{"name":"70th Device Research Conference","volume":"25 1","pages":"167-168"},"PeriodicalIF":0.0000,"publicationDate":"2012-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Electrical evidence of disorder at the SiO2/4H-SiC MOS interface and its effect on electron transport\",\"authors\":\"S. Swandono, A. Penumatcha, J. Cooper\",\"doi\":\"10.1109/DRC.2012.6257045\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Silicon carbide Schottky diodes have been in commercial production since 2002, their use has saved about $2B in energy and prevented about 10M tons of CO2 from being released into the atmosphere worldwide, equivalent to taking 1.7M automobiles off the roads. Recently, SiC power DMOSFETs entered commercial production, ushering in a new era of opportunity for wide bandgap power electronics. Going forward, high-voltage SiC MOSFETs and IGBTs hold the key to more efficient energy utilization and renewable energy production.\",\"PeriodicalId\":6808,\"journal\":{\"name\":\"70th Device Research Conference\",\"volume\":\"25 1\",\"pages\":\"167-168\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-06-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"70th Device Research Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DRC.2012.6257045\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"70th Device Research Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DRC.2012.6257045","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Electrical evidence of disorder at the SiO2/4H-SiC MOS interface and its effect on electron transport
Silicon carbide Schottky diodes have been in commercial production since 2002, their use has saved about $2B in energy and prevented about 10M tons of CO2 from being released into the atmosphere worldwide, equivalent to taking 1.7M automobiles off the roads. Recently, SiC power DMOSFETs entered commercial production, ushering in a new era of opportunity for wide bandgap power electronics. Going forward, high-voltage SiC MOSFETs and IGBTs hold the key to more efficient energy utilization and renewable energy production.