基于gpu的海量潮流并行分析批量lu分解求解器

Gan Zhou, Rui Bo, Lungsheng Chien
{"title":"基于gpu的海量潮流并行分析批量lu分解求解器","authors":"Gan Zhou, Rui Bo, Lungsheng Chien","doi":"10.1109/TDC.2018.8440513","DOIUrl":null,"url":null,"abstract":"In many power system applications such as N-x static security analysis and Monte-Carlo-simulation-based probabilistic power flow (PF) analysis, it is a very time consuming task to analyze massive number of power flows (PF) on identical or similar network topology. This letter presents a novel GPU-accelerated batch LU-factorization solver that achieves higher level of parallelism and better memory-access efficiency through packaging massive number of LU-factorization tasks to formulate a new larger-scale problem. The proposed solver can achieve up to 76 times speedup when compared to KLU library and lays a critical foundation for massive-PFs-solving applications.","PeriodicalId":6568,"journal":{"name":"2018 IEEE/PES Transmission and Distribution Conference and Exposition (T&D)","volume":"13 1","pages":"1-1"},"PeriodicalIF":0.0000,"publicationDate":"2018-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"GPU-Based Batch LU-Factorization Solver for Concurrent Analysis of Massive Power Flows\",\"authors\":\"Gan Zhou, Rui Bo, Lungsheng Chien\",\"doi\":\"10.1109/TDC.2018.8440513\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In many power system applications such as N-x static security analysis and Monte-Carlo-simulation-based probabilistic power flow (PF) analysis, it is a very time consuming task to analyze massive number of power flows (PF) on identical or similar network topology. This letter presents a novel GPU-accelerated batch LU-factorization solver that achieves higher level of parallelism and better memory-access efficiency through packaging massive number of LU-factorization tasks to formulate a new larger-scale problem. The proposed solver can achieve up to 76 times speedup when compared to KLU library and lays a critical foundation for massive-PFs-solving applications.\",\"PeriodicalId\":6568,\"journal\":{\"name\":\"2018 IEEE/PES Transmission and Distribution Conference and Exposition (T&D)\",\"volume\":\"13 1\",\"pages\":\"1-1\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-04-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE/PES Transmission and Distribution Conference and Exposition (T&D)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TDC.2018.8440513\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE/PES Transmission and Distribution Conference and Exposition (T&D)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TDC.2018.8440513","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

在许多电力系统应用中,如N-x静态安全分析和基于蒙特卡罗模拟的概率潮流分析,分析相同或相似网络拓扑上的大量潮流是一项非常耗时的任务。本文提出了一种新型的gpu加速批量lu分解求解器,通过封装大量的lu分解任务来制定一个新的更大规模的问题,实现了更高的并行性和更好的内存访问效率。与KLU库相比,该求解器可以实现高达76倍的加速,为大规模pfs求解应用奠定了重要基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
GPU-Based Batch LU-Factorization Solver for Concurrent Analysis of Massive Power Flows
In many power system applications such as N-x static security analysis and Monte-Carlo-simulation-based probabilistic power flow (PF) analysis, it is a very time consuming task to analyze massive number of power flows (PF) on identical or similar network topology. This letter presents a novel GPU-accelerated batch LU-factorization solver that achieves higher level of parallelism and better memory-access efficiency through packaging massive number of LU-factorization tasks to formulate a new larger-scale problem. The proposed solver can achieve up to 76 times speedup when compared to KLU library and lays a critical foundation for massive-PFs-solving applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Patterns in Failure Rate of LV Distribution Components Comparison of University Departments Regarding Their Area and Load Profile of an Existing Campus Design of a Flexible AC/DC-Link Aggregate Protection Response of Motor Loads in Commercial Buildings Hardware-in-the-Loop Test Bed and Test Methodology for Microgrid Controller Evaluation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1