E. Verpoorte, P. Oomen, M. Skolimowski, P. Mulder, P. V. van Midwoud, V. Starokozhko, M. Merema, G. Molema, G. Groothuis
{"title":"微技术如何实现器官芯片","authors":"E. Verpoorte, P. Oomen, M. Skolimowski, P. Mulder, P. V. van Midwoud, V. Starokozhko, M. Merema, G. Molema, G. Groothuis","doi":"10.1109/TRANSDUCERS.2015.7180902","DOIUrl":null,"url":null,"abstract":"Engineering cellular microenvironments that more accurately reflect the in vivo situation is now recognized as being crucial for the improvement of the in vitro viability and in vivo-like function of cells or tissues. Microfluidic technologies have been increasingly applied since the late 1990's for this purpose, with a growing number of examples of perfused cell and tissue cultures in microfluidic chambers and channels. More recently, additional microfabricated features have been implemented in microfluidic structures to achieve 3-D cell culture systems which mimic not only in vivo fluid flows, but also the structure, transport, and mechanical properties of tissue in, for example, the lung or the intestine. The ultimate challenge becomes the combination of different organ functions into single, linked-compartment devices - the body-on-the-chip.","PeriodicalId":6465,"journal":{"name":"2015 Transducers - 2015 18th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2015-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"How microtechnologies enable organs-on-a-chip\",\"authors\":\"E. Verpoorte, P. Oomen, M. Skolimowski, P. Mulder, P. V. van Midwoud, V. Starokozhko, M. Merema, G. Molema, G. Groothuis\",\"doi\":\"10.1109/TRANSDUCERS.2015.7180902\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Engineering cellular microenvironments that more accurately reflect the in vivo situation is now recognized as being crucial for the improvement of the in vitro viability and in vivo-like function of cells or tissues. Microfluidic technologies have been increasingly applied since the late 1990's for this purpose, with a growing number of examples of perfused cell and tissue cultures in microfluidic chambers and channels. More recently, additional microfabricated features have been implemented in microfluidic structures to achieve 3-D cell culture systems which mimic not only in vivo fluid flows, but also the structure, transport, and mechanical properties of tissue in, for example, the lung or the intestine. The ultimate challenge becomes the combination of different organ functions into single, linked-compartment devices - the body-on-the-chip.\",\"PeriodicalId\":6465,\"journal\":{\"name\":\"2015 Transducers - 2015 18th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-06-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 Transducers - 2015 18th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TRANSDUCERS.2015.7180902\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 Transducers - 2015 18th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TRANSDUCERS.2015.7180902","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Engineering cellular microenvironments that more accurately reflect the in vivo situation is now recognized as being crucial for the improvement of the in vitro viability and in vivo-like function of cells or tissues. Microfluidic technologies have been increasingly applied since the late 1990's for this purpose, with a growing number of examples of perfused cell and tissue cultures in microfluidic chambers and channels. More recently, additional microfabricated features have been implemented in microfluidic structures to achieve 3-D cell culture systems which mimic not only in vivo fluid flows, but also the structure, transport, and mechanical properties of tissue in, for example, the lung or the intestine. The ultimate challenge becomes the combination of different organ functions into single, linked-compartment devices - the body-on-the-chip.