雪上加霜——疾病中电压依赖性钙通道表达的分子和功能扰动

M. Mcenery
{"title":"雪上加霜——疾病中电压依赖性钙通道表达的分子和功能扰动","authors":"M. Mcenery","doi":"10.1109/LEOS.2001.969341","DOIUrl":null,"url":null,"abstract":"VDCC (voltage-dependent calcium channels) play a central role as scaffolding proteins for the binding of synaptic vesicle and presynaptic membrane proteins. In addition to spatial constraints imposed by the localization of VDCC, the calcium that enters neurons via VDCC is exquisitely regulated kinetically leading to the formation of \"microdomains\" that extend from the mouth of the VDCC to a distance of approximately 50 nm in radius. Experimental access to this nanoscale domain has been limited. Recently, the importance of VDCC to normal neuronal function has been underscored by the identification of genetic lesions in specific VDCC subunits that lead to inherited forms of neuropathies in humans and mice. The primary defect is often coupled to downstream compensatory effects that result in the altered pattern of expression of non-mutated VDCC subunits. However, the connection between the molecular defects that arise within these microdomains as a consequence of mutated VDCC subunits and the ensuing neuropathy is not well established. We present recent biophotonic advances that afford experimental access and insight into this nanoscale microdomain. Furthermore we present novel molecular and biochemical probes that offer detailed analysis of the pattern of VDCC subunit expression and function in normal and diseased neurons. We anticipate that this high-resolution molecular analysis will delineate features that can serve as both diagnostic signatures of disease as well as potential therapeutic targets.","PeriodicalId":18008,"journal":{"name":"LEOS 2001. 14th Annual Meeting of the IEEE Lasers and Electro-Optics Society (Cat. No.01CH37242)","volume":"41 1","pages":"392 vol.1-"},"PeriodicalIF":0.0000,"publicationDate":"2001-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Adding insult to injury-molecular and functional perturbations of voltage-dependent calcium channel expression in disease\",\"authors\":\"M. Mcenery\",\"doi\":\"10.1109/LEOS.2001.969341\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"VDCC (voltage-dependent calcium channels) play a central role as scaffolding proteins for the binding of synaptic vesicle and presynaptic membrane proteins. In addition to spatial constraints imposed by the localization of VDCC, the calcium that enters neurons via VDCC is exquisitely regulated kinetically leading to the formation of \\\"microdomains\\\" that extend from the mouth of the VDCC to a distance of approximately 50 nm in radius. Experimental access to this nanoscale domain has been limited. Recently, the importance of VDCC to normal neuronal function has been underscored by the identification of genetic lesions in specific VDCC subunits that lead to inherited forms of neuropathies in humans and mice. The primary defect is often coupled to downstream compensatory effects that result in the altered pattern of expression of non-mutated VDCC subunits. However, the connection between the molecular defects that arise within these microdomains as a consequence of mutated VDCC subunits and the ensuing neuropathy is not well established. We present recent biophotonic advances that afford experimental access and insight into this nanoscale microdomain. Furthermore we present novel molecular and biochemical probes that offer detailed analysis of the pattern of VDCC subunit expression and function in normal and diseased neurons. We anticipate that this high-resolution molecular analysis will delineate features that can serve as both diagnostic signatures of disease as well as potential therapeutic targets.\",\"PeriodicalId\":18008,\"journal\":{\"name\":\"LEOS 2001. 14th Annual Meeting of the IEEE Lasers and Electro-Optics Society (Cat. No.01CH37242)\",\"volume\":\"41 1\",\"pages\":\"392 vol.1-\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"LEOS 2001. 14th Annual Meeting of the IEEE Lasers and Electro-Optics Society (Cat. No.01CH37242)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/LEOS.2001.969341\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"LEOS 2001. 14th Annual Meeting of the IEEE Lasers and Electro-Optics Society (Cat. No.01CH37242)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/LEOS.2001.969341","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

电压依赖性钙通道(VDCC)作为支架蛋白在突触囊泡和突触前膜蛋白的结合中起着核心作用。除了由VDCC定位所施加的空间限制外,通过VDCC进入神经元的钙受到精细的动力学调节,导致形成从VDCC口延伸到半径约50纳米的“微域”。实验进入这个纳米级领域的途径是有限的。最近,VDCC对正常神经元功能的重要性已经通过在人类和小鼠中导致遗传性神经病变的特定VDCC亚基的遗传病变的鉴定而得到强调。主要缺陷通常与下游代偿效应相耦合,导致非突变VDCC亚基的表达模式改变。然而,由于VDCC亚基突变导致的这些微结构域中出现的分子缺陷与随后的神经病变之间的联系尚未得到很好的确定。我们介绍了最近的生物光子学进展,提供了实验途径和洞察这个纳米级微域。此外,我们提出了新的分子和生化探针,提供了详细的分析模式的VDCC亚基表达和功能在正常和病变神经元。我们预计,这种高分辨率的分子分析将描绘出既可以作为疾病诊断标志的特征,也可以作为潜在的治疗靶点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Adding insult to injury-molecular and functional perturbations of voltage-dependent calcium channel expression in disease
VDCC (voltage-dependent calcium channels) play a central role as scaffolding proteins for the binding of synaptic vesicle and presynaptic membrane proteins. In addition to spatial constraints imposed by the localization of VDCC, the calcium that enters neurons via VDCC is exquisitely regulated kinetically leading to the formation of "microdomains" that extend from the mouth of the VDCC to a distance of approximately 50 nm in radius. Experimental access to this nanoscale domain has been limited. Recently, the importance of VDCC to normal neuronal function has been underscored by the identification of genetic lesions in specific VDCC subunits that lead to inherited forms of neuropathies in humans and mice. The primary defect is often coupled to downstream compensatory effects that result in the altered pattern of expression of non-mutated VDCC subunits. However, the connection between the molecular defects that arise within these microdomains as a consequence of mutated VDCC subunits and the ensuing neuropathy is not well established. We present recent biophotonic advances that afford experimental access and insight into this nanoscale microdomain. Furthermore we present novel molecular and biochemical probes that offer detailed analysis of the pattern of VDCC subunit expression and function in normal and diseased neurons. We anticipate that this high-resolution molecular analysis will delineate features that can serve as both diagnostic signatures of disease as well as potential therapeutic targets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Investigation of 2D-lattice distributed reflector lasers Comparison of numerical aperture increasing lens and standard subsurface microscopy Optical coherence tomography of living and fabricated microfluidic systems Periodically poling by chromophore molecule orientation control in cross-linked polymer film [for SHG] Widely tunable fiber ring laser with EDFA/SOA
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1