利用声学特征进行车辆检测

M. Uttarakumari, A. S. Koushik, Anirudh S Raghavendra, Akshay Adiga, P. Harshita
{"title":"利用声学特征进行车辆检测","authors":"M. Uttarakumari, A. S. Koushik, Anirudh S Raghavendra, Akshay Adiga, P. Harshita","doi":"10.1109/CCAA.2017.8229975","DOIUrl":null,"url":null,"abstract":"This paper deals with the problem of classification of vehicles based on their acoustic signatures. Each type of vehicle transmits a particular type of engine sound, which can be used as a basis of classification. The samples are first collected using a reliable recording device. The signals so obtained are de-noised using wavelet analysis. The frames to be analyzed are selected using a unique energy index method. The prominent features of the obtained frame are then extracted. A novel feature selection method based on mean and variance is used to select the required features for analysis. The paper then focuses on a fast and potent method for classification of vehicles using k-nearest neighbours algorithm (kNN) into three categories: Two wheelers, four wheelers and Heavy Transport Vehicles (HTVs). Thus the method achieves its required results by using expeditive algorithms.","PeriodicalId":6627,"journal":{"name":"2017 International Conference on Computing, Communication and Automation (ICCCA)","volume":"7 1","pages":"1173-1177"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Vehicle detection using acoustic signatures\",\"authors\":\"M. Uttarakumari, A. S. Koushik, Anirudh S Raghavendra, Akshay Adiga, P. Harshita\",\"doi\":\"10.1109/CCAA.2017.8229975\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper deals with the problem of classification of vehicles based on their acoustic signatures. Each type of vehicle transmits a particular type of engine sound, which can be used as a basis of classification. The samples are first collected using a reliable recording device. The signals so obtained are de-noised using wavelet analysis. The frames to be analyzed are selected using a unique energy index method. The prominent features of the obtained frame are then extracted. A novel feature selection method based on mean and variance is used to select the required features for analysis. The paper then focuses on a fast and potent method for classification of vehicles using k-nearest neighbours algorithm (kNN) into three categories: Two wheelers, four wheelers and Heavy Transport Vehicles (HTVs). Thus the method achieves its required results by using expeditive algorithms.\",\"PeriodicalId\":6627,\"journal\":{\"name\":\"2017 International Conference on Computing, Communication and Automation (ICCCA)\",\"volume\":\"7 1\",\"pages\":\"1173-1177\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 International Conference on Computing, Communication and Automation (ICCCA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CCAA.2017.8229975\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Conference on Computing, Communication and Automation (ICCCA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCAA.2017.8229975","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本文研究了基于车辆声特征的车辆分类问题。每种类型的车辆都会发出一种特定类型的发动机声音,这可以作为分类的基础。首先使用可靠的记录设备收集样品。得到的信号用小波分析去噪。采用一种独特的能量指数法选择待分析的框架。然后提取得到的帧的显著特征。提出了一种基于均值和方差的特征选择方法来选择分析所需的特征。然后,本文重点研究了一种快速有效的方法,该方法使用k近邻算法(kNN)将车辆分为三类:两轮车、四轮车和重型运输车辆(HTVs)。该方法采用快速算法,达到了预期的效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Vehicle detection using acoustic signatures
This paper deals with the problem of classification of vehicles based on their acoustic signatures. Each type of vehicle transmits a particular type of engine sound, which can be used as a basis of classification. The samples are first collected using a reliable recording device. The signals so obtained are de-noised using wavelet analysis. The frames to be analyzed are selected using a unique energy index method. The prominent features of the obtained frame are then extracted. A novel feature selection method based on mean and variance is used to select the required features for analysis. The paper then focuses on a fast and potent method for classification of vehicles using k-nearest neighbours algorithm (kNN) into three categories: Two wheelers, four wheelers and Heavy Transport Vehicles (HTVs). Thus the method achieves its required results by using expeditive algorithms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Sentiment analysis on product reviews BSS: Blockchain security over software defined network A detailed analysis of data consistency concepts in data exchange formats (JSON & XML) CBIR by cascading features & SVM ADANS: An agriculture domain question answering system using ontologies
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1