深度角色-评价框架中的加速线性逼近方法

Dazi Li, Yu Zheng, Tianheng Song, Q. Jin
{"title":"深度角色-评价框架中的加速线性逼近方法","authors":"Dazi Li, Yu Zheng, Tianheng Song, Q. Jin","doi":"10.1109/DDCLS.2019.8909062","DOIUrl":null,"url":null,"abstract":"Reinforcement learning is considered to be one of the main methods of general artificial intelligence, which can realize self-learning of machines through interaction with the environment. In this paper, a modified version of deep reinforcement learning algorithm based on the Actor-Critic framework is proposed. Unlike traditional updated methods, the algorithm proposed in this paper adopts a special on-policy method, which we called Accelerated Linear Approximation Method in Deep Actor-Critic Framework (ALA-AC). When the network is trained to a certain extent, the networks' parameters of some layers are frozen, and the remaining layers' parameters are trained for better strategy and faster training speed.","PeriodicalId":6699,"journal":{"name":"2019 IEEE 8th Data Driven Control and Learning Systems Conference (DDCLS)","volume":"2 1","pages":"87-92"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Accelerated Linear Approximation Method in Deep Actor-Critic Framework\",\"authors\":\"Dazi Li, Yu Zheng, Tianheng Song, Q. Jin\",\"doi\":\"10.1109/DDCLS.2019.8909062\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Reinforcement learning is considered to be one of the main methods of general artificial intelligence, which can realize self-learning of machines through interaction with the environment. In this paper, a modified version of deep reinforcement learning algorithm based on the Actor-Critic framework is proposed. Unlike traditional updated methods, the algorithm proposed in this paper adopts a special on-policy method, which we called Accelerated Linear Approximation Method in Deep Actor-Critic Framework (ALA-AC). When the network is trained to a certain extent, the networks' parameters of some layers are frozen, and the remaining layers' parameters are trained for better strategy and faster training speed.\",\"PeriodicalId\":6699,\"journal\":{\"name\":\"2019 IEEE 8th Data Driven Control and Learning Systems Conference (DDCLS)\",\"volume\":\"2 1\",\"pages\":\"87-92\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE 8th Data Driven Control and Learning Systems Conference (DDCLS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DDCLS.2019.8909062\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 8th Data Driven Control and Learning Systems Conference (DDCLS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DDCLS.2019.8909062","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

强化学习被认为是通用人工智能的主要方法之一,它可以通过与环境的交互实现机器的自学习。本文提出了一种基于Actor-Critic框架的深度强化学习改进算法。与传统的更新方法不同,本文提出的算法采用了一种特殊的on-policy方法,我们称之为Deep actor - critical Framework (ALA-AC)中的加速线性逼近方法。当网络训练到一定程度时,部分层的网络参数被冻结,剩余层的网络参数继续训练,以获得更好的训练策略和更快的训练速度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An Accelerated Linear Approximation Method in Deep Actor-Critic Framework
Reinforcement learning is considered to be one of the main methods of general artificial intelligence, which can realize self-learning of machines through interaction with the environment. In this paper, a modified version of deep reinforcement learning algorithm based on the Actor-Critic framework is proposed. Unlike traditional updated methods, the algorithm proposed in this paper adopts a special on-policy method, which we called Accelerated Linear Approximation Method in Deep Actor-Critic Framework (ALA-AC). When the network is trained to a certain extent, the networks' parameters of some layers are frozen, and the remaining layers' parameters are trained for better strategy and faster training speed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An Incremental Conductance Method Based on Fuzzy Control Simulation of the Array Signals Processing Based on Automatic Gain Control for Two-Wave Mixing Interferometer An Intelligent Supervision System of Environmental Pollution in Industrial Park Iterative learning control with optimal learning gain for recharging of Lithium-ion battery Integrated Position and Speed Control for PMSM Servo System Based on Extended State Observer
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1