Rosileine Mendonça de Lima, Barbara Pisker, V. S. Corrêa
{"title":"人工智能中的性别偏见","authors":"Rosileine Mendonça de Lima, Barbara Pisker, V. S. Corrêa","doi":"10.18080/jtde.v11n2.690","DOIUrl":null,"url":null,"abstract":"This study presents a Systematic Literature Review (SLR) of Gender Bias in Artificial Intelligence (AI). The research was conducted using two techniques: a domain-based approach to SLR process providing a bibliometric sample description and in-depth examination of the thematic categories arising from inductive categorization, extracted from reading and interpretation of the final 35 sample articles analyzed. In answering three key research questions on the types, causes, and overcoming (mitigating) strategies of gender bias in artificial intelligence, three thematic treemaps were constructed, enabling systematic overview as an essential contribution to the literature. The main types of gender bias found in AI are categorized as societal, technical, and individual. Societal and socio-technical aspects stand out as the leading causes of bias, while debiasing, dataset design and gender sensitivity were the most frequent among the main strategies for overcoming bias. The study also proposes theoretical, practical and managerial capacity building and policy implications that aim to influence broad socio-technical challenges and refer to changes necessary, aiming to create bias-free artificial intelligence.","PeriodicalId":37752,"journal":{"name":"Australian Journal of Telecommunications and the Digital Economy","volume":"18 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Gender Bias in Artificial Intelligence\",\"authors\":\"Rosileine Mendonça de Lima, Barbara Pisker, V. S. Corrêa\",\"doi\":\"10.18080/jtde.v11n2.690\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study presents a Systematic Literature Review (SLR) of Gender Bias in Artificial Intelligence (AI). The research was conducted using two techniques: a domain-based approach to SLR process providing a bibliometric sample description and in-depth examination of the thematic categories arising from inductive categorization, extracted from reading and interpretation of the final 35 sample articles analyzed. In answering three key research questions on the types, causes, and overcoming (mitigating) strategies of gender bias in artificial intelligence, three thematic treemaps were constructed, enabling systematic overview as an essential contribution to the literature. The main types of gender bias found in AI are categorized as societal, technical, and individual. Societal and socio-technical aspects stand out as the leading causes of bias, while debiasing, dataset design and gender sensitivity were the most frequent among the main strategies for overcoming bias. The study also proposes theoretical, practical and managerial capacity building and policy implications that aim to influence broad socio-technical challenges and refer to changes necessary, aiming to create bias-free artificial intelligence.\",\"PeriodicalId\":37752,\"journal\":{\"name\":\"Australian Journal of Telecommunications and the Digital Economy\",\"volume\":\"18 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Australian Journal of Telecommunications and the Digital Economy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18080/jtde.v11n2.690\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Social Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Australian Journal of Telecommunications and the Digital Economy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18080/jtde.v11n2.690","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Social Sciences","Score":null,"Total":0}
This study presents a Systematic Literature Review (SLR) of Gender Bias in Artificial Intelligence (AI). The research was conducted using two techniques: a domain-based approach to SLR process providing a bibliometric sample description and in-depth examination of the thematic categories arising from inductive categorization, extracted from reading and interpretation of the final 35 sample articles analyzed. In answering three key research questions on the types, causes, and overcoming (mitigating) strategies of gender bias in artificial intelligence, three thematic treemaps were constructed, enabling systematic overview as an essential contribution to the literature. The main types of gender bias found in AI are categorized as societal, technical, and individual. Societal and socio-technical aspects stand out as the leading causes of bias, while debiasing, dataset design and gender sensitivity were the most frequent among the main strategies for overcoming bias. The study also proposes theoretical, practical and managerial capacity building and policy implications that aim to influence broad socio-technical challenges and refer to changes necessary, aiming to create bias-free artificial intelligence.
期刊介绍:
The Journal of Telecommunications and the Digital Economy (JTDE) is an international, open-access, high quality, peer reviewed journal, indexed by Scopus and Google Scholar, covering innovative research and practice in Telecommunications, Digital Economy and Applications. The mission of JTDE is to further through publication the objective of advancing learning, knowledge and research worldwide. The JTDE publishes peer reviewed papers that may take the following form: *Research Paper - a paper making an original contribution to engineering knowledge. *Special Interest Paper – a report on significant aspects of a major or notable project. *Review Paper for specialists – an overview of a relevant area intended for specialists in the field covered. *Review Paper for non-specialists – an overview of a relevant area suitable for a reader with an electrical/electronics background. *Public Policy Discussion - a paper that identifies or discusses public policy and includes investigation of legislation, regulation and what is happening around the world including best practice *Tutorial Paper – a paper that explains an important subject or clarifies the approach to an area of design or investigation. *Technical Note – a technical note or letter to the Editors that is not sufficiently developed or extensive in scope to constitute a full paper. *Industry Case Study - a paper that provides details of industry practices utilising a case study to provide an understanding of what is occurring and how the outcomes have been achieved. *Discussion – a contribution to discuss a published paper to which the original author''s response will be sought. Historical - a paper covering a historical topic related to telecommunications or the digital economy.