脂肪细胞作为分泌器官:囊泡运输机制和分泌途径。

R. L. Bradley, K. Cleveland, B. Cheatham
{"title":"脂肪细胞作为分泌器官:囊泡运输机制和分泌途径。","authors":"R. L. Bradley, K. Cleveland, B. Cheatham","doi":"10.1210/RP.56.1.329","DOIUrl":null,"url":null,"abstract":"Obesity is a common problem in western society that is directly linked to several disease processes and is associated with significant morbidity and mortality. Adipocytes--the primary site for energy storage (as triglycerides) and release--were long suspected to have an active role in regulating body weight homeostasis and energy balance. As a result, many studies have focused on finding abnormalities in adipocyte physiology and metabolism. An ever-increasing body of evidence indicates that, in addition to serving as a repository for energy reserves, adipocytes secrete a myriad of factors that comprise a complex network of endocrine, autocrine, and paracrine signals. Very little is known regarding the molecular mechanisms utilized by the adipocyte in regulating the biosynthesis and exocytosis of these secreted products. In order to gain a better understanding of these processes, we have examined the two classical secretory pathways: regulated and constitutive. Using leptin as a model adipocyte-secretory protein, this review focuses primarily on the latter pathway. This includes regulation of leptin synthesis and secretion by insulin and glucocorticoids and, more recently, the finding that the orexigenic neuropeptide, melanin-concentrating hormone (MCH), can stimulate leptin synthesis and secretion. This chapter also incorporates new data describing the partial purification and effect of insulin on leptin-containing vesicles in rat adipocytes. These data indicate that the majority of leptin trafficking occurs via a constitutive secretory pathway and that the primary acute insulin effect on leptin secretion is to increase leptin protein content. In addition, we describe the identification and characterization of the vesicle-associated protein, pantophysin, which may play a multifunctional role in vesicle biogenesis and transport.","PeriodicalId":21099,"journal":{"name":"Recent progress in hormone research","volume":"61 1","pages":"329-58"},"PeriodicalIF":0.0000,"publicationDate":"2001-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"77","resultStr":"{\"title\":\"The adipocyte as a secretory organ: mechanisms of vesicle transport and secretory pathways.\",\"authors\":\"R. L. Bradley, K. Cleveland, B. Cheatham\",\"doi\":\"10.1210/RP.56.1.329\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Obesity is a common problem in western society that is directly linked to several disease processes and is associated with significant morbidity and mortality. Adipocytes--the primary site for energy storage (as triglycerides) and release--were long suspected to have an active role in regulating body weight homeostasis and energy balance. As a result, many studies have focused on finding abnormalities in adipocyte physiology and metabolism. An ever-increasing body of evidence indicates that, in addition to serving as a repository for energy reserves, adipocytes secrete a myriad of factors that comprise a complex network of endocrine, autocrine, and paracrine signals. Very little is known regarding the molecular mechanisms utilized by the adipocyte in regulating the biosynthesis and exocytosis of these secreted products. In order to gain a better understanding of these processes, we have examined the two classical secretory pathways: regulated and constitutive. Using leptin as a model adipocyte-secretory protein, this review focuses primarily on the latter pathway. This includes regulation of leptin synthesis and secretion by insulin and glucocorticoids and, more recently, the finding that the orexigenic neuropeptide, melanin-concentrating hormone (MCH), can stimulate leptin synthesis and secretion. This chapter also incorporates new data describing the partial purification and effect of insulin on leptin-containing vesicles in rat adipocytes. These data indicate that the majority of leptin trafficking occurs via a constitutive secretory pathway and that the primary acute insulin effect on leptin secretion is to increase leptin protein content. In addition, we describe the identification and characterization of the vesicle-associated protein, pantophysin, which may play a multifunctional role in vesicle biogenesis and transport.\",\"PeriodicalId\":21099,\"journal\":{\"name\":\"Recent progress in hormone research\",\"volume\":\"61 1\",\"pages\":\"329-58\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"77\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Recent progress in hormone research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1210/RP.56.1.329\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Recent progress in hormone research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1210/RP.56.1.329","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 77

摘要

肥胖是西方社会的一个普遍问题,与几种疾病过程直接相关,并与显著的发病率和死亡率相关。脂肪细胞是能量储存(如甘油三酯)和释放的主要部位,长期以来一直被怀疑在调节体重稳态和能量平衡方面发挥积极作用。因此,许多研究都集中在寻找脂肪细胞生理和代谢的异常。越来越多的证据表明,除了作为能量储备的储存库,脂肪细胞还分泌无数的因子,这些因子构成了一个复杂的内分泌、自分泌和旁分泌信号网络。关于脂肪细胞在调节这些分泌产物的生物合成和胞吐过程中所利用的分子机制,我们知之甚少。为了更好地理解这些过程,我们研究了两种经典的分泌途径:调节和构成。以瘦素为模型脂肪细胞分泌蛋白,本文主要关注后一途径。这包括胰岛素和糖皮质激素对瘦素合成和分泌的调节,以及最近发现的产氧神经肽黑色素浓缩激素(MCH)可以刺激瘦素的合成和分泌。本章还纳入了描述胰岛素对大鼠脂肪细胞中含瘦素囊泡的部分纯化和影响的新数据。这些数据表明,大多数瘦素运输是通过组成分泌途径发生的,胰岛素对瘦素分泌的主要急性影响是增加瘦素蛋白含量。此外,我们还描述了囊泡相关蛋白pantophysin的鉴定和表征,该蛋白可能在囊泡的生物发生和运输中发挥多功能作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The adipocyte as a secretory organ: mechanisms of vesicle transport and secretory pathways.
Obesity is a common problem in western society that is directly linked to several disease processes and is associated with significant morbidity and mortality. Adipocytes--the primary site for energy storage (as triglycerides) and release--were long suspected to have an active role in regulating body weight homeostasis and energy balance. As a result, many studies have focused on finding abnormalities in adipocyte physiology and metabolism. An ever-increasing body of evidence indicates that, in addition to serving as a repository for energy reserves, adipocytes secrete a myriad of factors that comprise a complex network of endocrine, autocrine, and paracrine signals. Very little is known regarding the molecular mechanisms utilized by the adipocyte in regulating the biosynthesis and exocytosis of these secreted products. In order to gain a better understanding of these processes, we have examined the two classical secretory pathways: regulated and constitutive. Using leptin as a model adipocyte-secretory protein, this review focuses primarily on the latter pathway. This includes regulation of leptin synthesis and secretion by insulin and glucocorticoids and, more recently, the finding that the orexigenic neuropeptide, melanin-concentrating hormone (MCH), can stimulate leptin synthesis and secretion. This chapter also incorporates new data describing the partial purification and effect of insulin on leptin-containing vesicles in rat adipocytes. These data indicate that the majority of leptin trafficking occurs via a constitutive secretory pathway and that the primary acute insulin effect on leptin secretion is to increase leptin protein content. In addition, we describe the identification and characterization of the vesicle-associated protein, pantophysin, which may play a multifunctional role in vesicle biogenesis and transport.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Polymorphisms in the glucocorticoid receptor gene and their associations with metabolic parameters and body composition. Glucocorticoids and 11beta-hydroxysteroid dehydrogenase in adipose tissue. The central melanocortin system and the integration of short- and long-term regulators of energy homeostasis. Monogenic human obesity syndromes. Cardiomyocyte calcium and calcium/calmodulin-dependent protein kinase II: friends or foes?
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1