M. J. Afridi, Chun Liu, C. Chan, S. Baek, Xiaoming Liu
{"title":"不同培养条件下间充质干细胞的图像分割","authors":"M. J. Afridi, Chun Liu, C. Chan, S. Baek, Xiaoming Liu","doi":"10.1109/WACV.2014.6836058","DOIUrl":null,"url":null,"abstract":"Researchers in the areas of regenerative medicine and tissue engineering have great interests in understanding the relationship of different sets of culturing conditions and applied mechanical stimuli to the behavior of mesenchymal stem cells (MSCs). However, it is challenging to design a tool to perform automatic cell image analysis due to the diverse morphologies of MSCs. Therefore, as a primary step towards developing the tool, we propose a novel approach for accurate cell image segmentation. We collected three MSC datasets cultured on different surfaces and exposed to diverse mechanical stimuli. By analyzing existing approaches on our data, we choose to substantially extend binarization-based extraction of alignment score (BEAS) approach by extracting novel discriminating features and developing an adaptive threshold estimation model. Experimental results on our data shows our approach is superior to seven conventional techniques. We also define three quantitative measures to analyze the characteristics of images in our datasets. To the best of our knowledge, this is the first study that applied automatic segmentation to live MSC cultured on different surfaces with applied stimuli.","PeriodicalId":73325,"journal":{"name":"IEEE Winter Conference on Applications of Computer Vision. IEEE Winter Conference on Applications of Computer Vision","volume":"55 1","pages":"516-523"},"PeriodicalIF":0.0000,"publicationDate":"2014-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Image segmentation of mesenchymal stem cells in diverse culturing conditions\",\"authors\":\"M. J. Afridi, Chun Liu, C. Chan, S. Baek, Xiaoming Liu\",\"doi\":\"10.1109/WACV.2014.6836058\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Researchers in the areas of regenerative medicine and tissue engineering have great interests in understanding the relationship of different sets of culturing conditions and applied mechanical stimuli to the behavior of mesenchymal stem cells (MSCs). However, it is challenging to design a tool to perform automatic cell image analysis due to the diverse morphologies of MSCs. Therefore, as a primary step towards developing the tool, we propose a novel approach for accurate cell image segmentation. We collected three MSC datasets cultured on different surfaces and exposed to diverse mechanical stimuli. By analyzing existing approaches on our data, we choose to substantially extend binarization-based extraction of alignment score (BEAS) approach by extracting novel discriminating features and developing an adaptive threshold estimation model. Experimental results on our data shows our approach is superior to seven conventional techniques. We also define three quantitative measures to analyze the characteristics of images in our datasets. To the best of our knowledge, this is the first study that applied automatic segmentation to live MSC cultured on different surfaces with applied stimuli.\",\"PeriodicalId\":73325,\"journal\":{\"name\":\"IEEE Winter Conference on Applications of Computer Vision. IEEE Winter Conference on Applications of Computer Vision\",\"volume\":\"55 1\",\"pages\":\"516-523\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-03-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Winter Conference on Applications of Computer Vision. IEEE Winter Conference on Applications of Computer Vision\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WACV.2014.6836058\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Winter Conference on Applications of Computer Vision. IEEE Winter Conference on Applications of Computer Vision","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WACV.2014.6836058","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Image segmentation of mesenchymal stem cells in diverse culturing conditions
Researchers in the areas of regenerative medicine and tissue engineering have great interests in understanding the relationship of different sets of culturing conditions and applied mechanical stimuli to the behavior of mesenchymal stem cells (MSCs). However, it is challenging to design a tool to perform automatic cell image analysis due to the diverse morphologies of MSCs. Therefore, as a primary step towards developing the tool, we propose a novel approach for accurate cell image segmentation. We collected three MSC datasets cultured on different surfaces and exposed to diverse mechanical stimuli. By analyzing existing approaches on our data, we choose to substantially extend binarization-based extraction of alignment score (BEAS) approach by extracting novel discriminating features and developing an adaptive threshold estimation model. Experimental results on our data shows our approach is superior to seven conventional techniques. We also define three quantitative measures to analyze the characteristics of images in our datasets. To the best of our knowledge, this is the first study that applied automatic segmentation to live MSC cultured on different surfaces with applied stimuli.