低惯量可调电动汽车永磁同步电机驱动系统无模型预测电流控制

Yao Wei, Shuaicheng Men, Yanjun Wei, H. Qi, Fengxiang Wang
{"title":"低惯量可调电动汽车永磁同步电机驱动系统无模型预测电流控制","authors":"Yao Wei, Shuaicheng Men, Yanjun Wei, H. Qi, Fengxiang Wang","doi":"10.1109/ITECAsia-Pacific56316.2022.9942142","DOIUrl":null,"url":null,"abstract":"To overcome the performance limitation caused by the unsuitable inertia, a model-free predictive current control (MF-PCC) strategy with adjustable low inertia is proposed in this paper and applied to the permanent magnet synchronous motor (PMSM) driving system of the electrical vehicle (EV). An extended state observer (ESO) with an inertia ratio part is designed to estimate the disturbance which is used to adjust the inertia and build the ultra-local model at the same time to achieve better control performance without any physical parameters. The bode diagram and experimental validations demonstrate the effectiveness of the proposed method, as well as the advantages including improved dynamics, better stator current quality, and suitable robustness compared to the conventional MF-PCC strategy based on the ultra-local model under the physical parameter mismatch conditions.","PeriodicalId":45126,"journal":{"name":"Asia-Pacific Journal-Japan Focus","volume":"1 1","pages":"1-7"},"PeriodicalIF":0.2000,"publicationDate":"2022-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Model-Free Predictive Current Control for PMSM Driving System of EV with Adjustable Low Inertia\",\"authors\":\"Yao Wei, Shuaicheng Men, Yanjun Wei, H. Qi, Fengxiang Wang\",\"doi\":\"10.1109/ITECAsia-Pacific56316.2022.9942142\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To overcome the performance limitation caused by the unsuitable inertia, a model-free predictive current control (MF-PCC) strategy with adjustable low inertia is proposed in this paper and applied to the permanent magnet synchronous motor (PMSM) driving system of the electrical vehicle (EV). An extended state observer (ESO) with an inertia ratio part is designed to estimate the disturbance which is used to adjust the inertia and build the ultra-local model at the same time to achieve better control performance without any physical parameters. The bode diagram and experimental validations demonstrate the effectiveness of the proposed method, as well as the advantages including improved dynamics, better stator current quality, and suitable robustness compared to the conventional MF-PCC strategy based on the ultra-local model under the physical parameter mismatch conditions.\",\"PeriodicalId\":45126,\"journal\":{\"name\":\"Asia-Pacific Journal-Japan Focus\",\"volume\":\"1 1\",\"pages\":\"1-7\"},\"PeriodicalIF\":0.2000,\"publicationDate\":\"2022-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Asia-Pacific Journal-Japan Focus\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ITECAsia-Pacific56316.2022.9942142\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"AREA STUDIES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asia-Pacific Journal-Japan Focus","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITECAsia-Pacific56316.2022.9942142","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"AREA STUDIES","Score":null,"Total":0}
引用次数: 1

摘要

为了克服惯性不合适对系统性能的限制,提出了一种低惯性可调的无模型预测电流控制策略,并将其应用于电动汽车永磁同步电机驱动系统中。设计了带惯性比部分的扩展状态观测器(ESO)来估计扰动,并利用该扰动对系统的惯性量进行调整,同时建立超局部模型,在不需要任何物理参数的情况下获得更好的控制性能。波德图和实验验证表明,在物理参数失配条件下,与传统的基于超局部模型的MF-PCC策略相比,该方法具有改进的动力学特性、更好的定子电流质量和较好的鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Model-Free Predictive Current Control for PMSM Driving System of EV with Adjustable Low Inertia
To overcome the performance limitation caused by the unsuitable inertia, a model-free predictive current control (MF-PCC) strategy with adjustable low inertia is proposed in this paper and applied to the permanent magnet synchronous motor (PMSM) driving system of the electrical vehicle (EV). An extended state observer (ESO) with an inertia ratio part is designed to estimate the disturbance which is used to adjust the inertia and build the ultra-local model at the same time to achieve better control performance without any physical parameters. The bode diagram and experimental validations demonstrate the effectiveness of the proposed method, as well as the advantages including improved dynamics, better stator current quality, and suitable robustness compared to the conventional MF-PCC strategy based on the ultra-local model under the physical parameter mismatch conditions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.20
自引率
0.00%
发文量
8
期刊最新文献
An Inertia Adjustment Control Strategy of Grid-Forming Electric Vehicle for V2G Application An Improved Control Strategy of PM-Assisted Synchronous Reluctance Machines Based on an Extended State Observer Comparison and evaluation of the thermal performance between SiC-MOSFET and Si-IGBT Analysis and Design of Passive Damping for LC-Equipped Permanent-Magnet Synchronous Machine Drive System Research on dynamic pricing strategy of electric material distribution vehicle based on master-slave game and multi-hot code
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1